due February 27, 2009

1. Lorentz Transformations

Lorentz transformations are a set of maps $\pounds: M^4 \to M^4$: so that $\forall L \in \pounds$, there is $g = LgL^T$, where M^4 is Minkovski space with following metric g

$$g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

These maps \pounds form a group.

(a) (4 p) Prove that in M^4 , the boost along the x direction L_x can be written in terms of the exponentiation of generator L_1 :

$$L_x = exp(-R_x L_1) \tag{1}$$

where $R_x = \tanh(v_x/c)$ and L_1 is the extension of σ_1 written as

where σ_1 is the Pauli matrix

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right).$$

Hint: Remember how to set up a matrix algebra for calculating e^A , with A being a matrix

- (b) (3 p) By the example of 3a, find the generators L_2 and L_3 which are also natural extension of σ_1 , which can generate the boost along y and z direction respectively via exponentiation.
- (c) (3 p) Verify that the commutator $[L_1, L_2]$ can generate a rotation along a certain direction and in a certain plane via exponentiation. Find the direction of rotation and the plane.
- 2. (5 p) Show the Lorentz invariance of the Klein-Gordon equation.