Phys 735: Homework VIII

due February 27, 2009

1. Lorentz Transformations

Lorentz transformations are a set of maps $£: M^{4} \rightarrow M^{4}$: so that $\forall L \in £$, there is $g=L g L^{T}$, where M^{4} is Minkovski space with following metric g

$$
g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

These maps $£$ form a group.
(a) (4 p) Prove that in M^{4}, the boost along the x direction L_{x} can be written in terms of the exponentiation of generator L_{1} :

$$
\begin{equation*}
L_{x}=\exp \left(-R_{x} L_{1}\right) \tag{1}
\end{equation*}
$$

where $R_{x}=\tanh \left(v_{x} / c\right)$ and L_{1} is the extension of σ_{1} written as

$$
L_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \tag{2}\\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where σ_{1} is the Pauli matrix

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Hint: Remember how to set up a matrix algebra for calculating e^{A}, with A being a matrix
(b) (3 p) By the example of 3a, find the generators L_{2} and L_{3} which are also natural extension of σ_{1}, which can generate the boost along y and z direction respectively via exponentiation.
(c) (3 p) Verify that the commutator $\left[L_{1}, L_{2}\right]$ can generate a rotation along a certain direction and in a certain plane via exponentiation. Find the direction of rotation and the plane.
2. (5 p) Show the Lorentz invariance of the Klein-Gordon equation.

