Phys 735: Homework IX

due March 6, 2009
(to be presented in class in the week of March 8)

1. Pionic Atom with a Point-Like Nucleus
The minimum coupling of the electromagnetic field is written in a four-dimensional way

as .
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With this, the Klein-Gordon equation with an electromagnetic field is given as
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(a) [5 pts]
Derive an expression for the four-current density in the electromagnetic field A, and
give expressions for the charge density and the charge-current density.

Then, consider a 7~ meson (with mass m,c?*=139.577 MeV and spin 0) being bound

by the Coulomb potential
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in a stationary state of total energy E<m. A stationary state of the Klein-Gordon
equation has the form

U(r,t) = p(r) exp(—iEt/h) (4)
and |E| is the energy per particle.

(b) [2 pts]
What is the time-independent Klein-Gordon equation for this potential?

(c) [4 pts]

Assume the radial and angular parts of the wave function ¢(r) separate. Verify that
this yields
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with

a=e=—~ — (6)



(d) [3 pts
Show that this equation can be written in the dimensionless form

ld_2 pwr—=1/4 X 1

with

W= <l+%)2—(Za)2
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(e) [3 pts]
Assume this equation has a solution in the usual form of a power series times the
p — oo and p — 0 solutions:

u(p) = p"(1 4 cip + cop® + cap® + - - e P/ 9)
Show that
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(£) [3 pts]
Show that for both k, and k_ the wave function is divergent at the origin yet
normalizable.

(2) [4 pts]

Show that only for k. is the expectation value of the kinetic energy finite:
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(h) [4 pts]
Show that the k., solution has a nonrelativistic limit which agrees with the solution
found for the Schrodinger equation.

(i) /4 pts/
Determine the recurrence relation among the ¢;’s for this to be a solution of the
Klein-Gordon equation.



() [3 pts]

Show that unless the power series of (d) terminates, the wave function will have an
incorrect asymptotic form.

(k) [4 pts]

Show that the termination condition determines the eigen-energy for the k., solution

to be
o\ 172
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() /4 pts]

Expand E in powers of a? and show that the o? term yields the Bohr formula, and
that higher order terms can be identified with relativistic corrections.

(m) /3 pts]
Is the I-degeneracy present in the nonrelativistic theory now removed? (And if so,
to what order in a?)



