Physics 735: Exam II (Take Home - Makeup)

March 24, 2009
Due March 25, 2009, 17:00 (5 pm)

1. New Diagonal Form of the Dirac Equation

We can introduce a Foldy-Wouthuysen transformation which will completely eliminate the lower component from the free positive energy solutions and the upper components from the free negative energy solutions.

The advantage of such a representation is that it allows us to regard the mixing of upper and lower components as a dynamical consequence of the interaction, whereas the free Dirac equation is fully diagonalized.

A unitary transformation which accomplishes this is

$$
U=\sqrt{\frac{E+m}{2 E}}\left(\begin{array}{cc}
1 & \frac{\vec{\sigma} \cdot \vec{p}}{E+m} \tag{1}\\
\frac{-\vec{\sigma} \cdot \vec{p}}{E+m} & 1
\end{array}\right)
$$

(a) [4 pts] Show by direct computation that U is unitary, i.e. $U^{\dagger} U=\mathbf{1}$.
(b) [2 pts] Show that

$$
\begin{align*}
U u(\vec{p}, s) & =\sqrt{2 E}\binom{\chi^{(s)}}{0} \\
U v(-\vec{p},-s) & =\sqrt{2 E}\binom{0}{-i \sigma_{2} \chi^{(-s)}} . \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& u(\vec{p}, s)=\sqrt{E_{p}+m}\left(\begin{array}{c}
1 \\
\frac{\sigma}{\sigma} \cdot \vec{p} \\
E_{p}+m
\end{array}\right) \chi^{(s)} \\
& v(\vec{p}, s)=\sqrt{E_{p}+m}\left(\begin{array}{c}
\frac{\sigma}{\sigma} \cdot \vec{p} \\
E_{p}+m \\
1
\end{array}\right)\left[-i \sigma_{2} \chi^{(s)}\right] . \tag{3}
\end{align*}
$$

Here $\chi^{(s)}$ is the usual Pauli spinor.
(c) [5 pts] Show that the transformed free Hamiltonian, $H_{0}=\vec{\alpha} \cdot \vec{p}+\beta m$ is given by

$$
U H_{0} U^{\dagger}=\beta E=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \tag{4}\\
0 & E & 0 & 0 \\
0 & 0 & -E & 0 \\
0 & 0 & 0 & -E
\end{array}\right)
$$

In this form the free Dirac equation takes a form similar to the 2-component KleinGordon equation.
(d) $[15 \mathrm{pts}]$ Show that in this representation the Dirac equation with electromagnetic interactions (given usually with $H=\vec{\alpha} \cdot\left(\vec{p}-\vec{V}+\beta m+V^{0}\right)$ can be written

$$
\begin{equation*}
i \frac{\partial}{\partial t} \psi=\beta E \psi+\left(H_{1}+\beta H_{2}+\vec{\sigma} \cdot \vec{H}_{3}+\beta \vec{\sigma} \cdot \vec{H}_{4}+\vec{\alpha} \cdot \vec{H}_{5}+i \beta \vec{\alpha} \cdot \vec{H}_{6}+\gamma^{5} H_{7}\right) \psi \tag{5}
\end{equation*}
$$

Proceed by introducing

$$
\begin{align*}
\vec{D} & =\frac{\vec{p}}{E+m}=\frac{-i \nabla}{E_{\nabla}+m} \\
\theta & =\sqrt{\frac{E+m}{2 E}} \tag{6}
\end{align*}
$$

and show that the functions $H_{i}(i=1,7)$ are given by

$$
\begin{align*}
H_{1} & =\theta\left(V^{0}+D_{j} V^{0} D_{j}\right) \theta \\
H_{2} & =-\theta(\vec{V} \cdot \vec{D}+\vec{D} \cdot \vec{V}) \theta \\
H_{3}^{k} & =\theta\left(i \epsilon_{i j k} D_{i} V^{0} D_{j}\right) \theta \\
\vec{H}_{4} & =-\theta(i \vec{V} \times \vec{D})+i(\vec{D} \times \vec{V})) \theta \\
\vec{H}_{5} & =\theta\left(-\vec{V}+(\vec{D} \cdot \vec{V}) \vec{D}+\vec{D}(\vec{V} \cdot \vec{D})-\sum_{j} D_{j} \vec{V} D_{j}\right) \theta \\
\vec{H}_{6} & =\theta\left(i V^{0} \vec{D}-i \vec{D} V^{0}\right) \theta \\
H_{7} & =\theta\left(i \epsilon_{i j k} D_{i} V_{j} D_{k}\right) \theta \tag{7}
\end{align*}
$$

2. Massless Dirac particle in a 1D square well

A massless spin- $1 / 2$ particle moves in a one-dimensional square well potential of depth $V_{0} \leq 0$ and a width a. Assume that the potential is a scalar potential (i.e. behaves as βV_{0}). Divide the real axis into three domains:

$$
\begin{align*}
I: & z<-a / 2 \\
I I: & -a / 2 \leq z \leq a / 2 \\
I I I: & z>a / 2 \tag{8}
\end{align*}
$$

(a) (4 pts) Write down the correct Dirac equation for the motion of this particle.
(b) (4 pts) Show that the equation found in (a) is invariant under parity transformation, i.e. the transformation $z \rightarrow-z$
(c) (6 pts) Solve the equation for the ground state and wave function of the trapped particle. Take the limit $V_{0} \rightarrow \infty$, and sketch the solution for this case. Comment on any interesting feature which this solution might show.

