How to round numbers off

In this course, when we calculate a numerical value, we only will care about three or four digits

- Rounding to four digits
- Look at the leftmost non-zero digit, and take it and the next three digits to the right as your result, keeping any zeros on the left
- If the next digit on the right is 5 or greater, add one to the rightmost digit of your result
- Example: 0.003452 38
- First four non-zero digits, and keeping the zeroes on the left are 0.003452 , the next digit is 8 , so the result becomes 0.003453.

Scientific Notation

Speed of light: $300,000,000 \mathrm{~m} / \mathrm{sec}$
Mass of a dust particle: 0.000000000753 kg
Is there a better method to describe these long numbers?
Yes! - Scientific notation

1.2 times 10 to the power of 3
$300,000,000=3 \times 10^{8} 8$: how many places after the first number $0.000000000753=7.53 \times 10^{-10} \underline{10}$: how many 0 s before first num.
$1200=1.2 \times 10^{3}=1.2 \mathrm{e} 3$ (used in LON-CAPA)

Fundamental Units

$$
\begin{aligned}
& \text { Physical quantity }=\text { Number + Unit } \\
& \text { e.g., Height } \begin{aligned}
& =6 \quad \text { feet } \\
& =1.8 \quad \text { meters }
\end{aligned} \text { Need to standardize units } \\
& \text { SI Units (Systeme Interationale) - metric }
\end{aligned}
$$

distance
time
mass
meter
second
kilogram
[m]
[s]
[kg]

British units: distance - mile, yard, foot, inch mass - pound, ounce
Complex units in CAPA: m/s^2

Prefix of a Unit 1 kilometer [km] $=1000 \mathrm{~m}=10^{3} \mathrm{~m}$

1 centimeter $[\mathrm{cm}] \quad=(1 / 100) \mathrm{m}=10^{-2} \mathrm{~m}$
1 millimeter $[\mathrm{mm}]=(1 / 1000) \mathrm{m}=10^{-3} \mathrm{~m}$
Useful prefixes to denote multiples of ten:
Giga (G): 10^{9}
Mega (M): 10^{6}
Kilo (k): $\mathbf{1 0}^{\mathbf{3}}$
Centi (c): $\mathbf{1 0}^{-2}$
Milli (m): $\mathbf{1 0}^{-3}$
Micro (μ): 10^{-6}
Nano (n): 10^{-9}

Unit Conversion

How many miles are equal to 2.5 km ?
(1 mile $=1.61 \mathrm{~km}$)

Tips for unit conversion:
$>$ Multiply the quantity by the ratio of the two units, with the unit you want to keep on top:

$$
\begin{gathered}
2.5 \mathrm{~km} \times \frac{1 \mathrm{mile}}{1.61 \mathrm{~km}}=\frac{2.5 \mathrm{~km}}{1} \times \frac{1 \mathrm{mile}}{1.61 \mathrm{~km}} \\
=\frac{2.5 \mathrm{~km} \times 1 \mathrm{mile}}{1.61 \mathrm{~km}} \\
=\frac{2.5}{1.61} \text { mile } \\
=1.553 \mathrm{mile}
\end{gathered}
$$

