Doppler Effect: Example Problem
The siren of a police car emits a pure tone at a frequency of 1125 Hz .
Find the frequency that you would perceive under the following circumstances:
(a) Your car is at rest, the police car moves toward you at $29 \mathrm{~m} / \mathrm{s}$

Known: $\quad f=1125 \mathrm{~Hz} ; \quad v_{\text {source }}=29 \frac{\mathrm{~m}}{6} ; v=v_{\text {send }}=340 \frac{\mathrm{~m}}{\mathrm{~s}}$
unknown: $f^{\prime} \equiv$ perceived prequacy by stationary observer
Equation: $f^{\prime}=f \frac{v \pm v_{0}}{v \mp v_{s}}$
car (observer) at rest $\Rightarrow v_{0}=0 \frac{\mathrm{~m}}{\mathrm{~s}}$
source moves toward observer \Rightarrow upper sign (-) in denominator

$$
\begin{aligned}
f^{\prime}=f \frac{v}{v-v_{s}} & =1125 \mathrm{~Hz} \frac{340 \mathrm{~m} / \mathrm{s}}{340 \mathrm{~m} / \mathrm{s}-29 \mathrm{~m} / \mathrm{s}} \\
& =1229.9 \mathrm{~Hz}
\end{aligned}
$$

Cross check: Do you expect a higher frequency in this case?
(b) the police car is at rest, your car moves toward it at $29 \mathrm{~m} / \mathrm{s}$

$$
\text { Known: } \begin{aligned}
f=1125 \mathrm{~Hz} ; & v_{\text {observer }}=29 \frac{\mathrm{~m}}{6} ; v^{\prime}=v_{\text {sound }}=340 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{\text {source }}=0 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

unknown: $f^{\prime} \equiv$ perceived frequency by stationary observer
Equation: $\quad f^{\prime}=f \frac{v \pm v_{0}}{v \mp v_{s}}$

$$
\begin{aligned}
& \text { observer moves towards source } \Rightarrow \\
& \text { ieper sign }(t) \\
& \\
& f^{f^{\prime}=f \frac{v+v_{0}}{v}}=1125 \mathrm{~Hz} \frac{340 \frac{\mathrm{~m}}{\mathrm{~s}}+29 \frac{\mathrm{~m}}{\mathrm{~s}}}{340 \frac{\mathrm{~m}}{\mathrm{~s}}} \\
&
\end{aligned}
$$

Cross check: Do you expect a higher prequeuly in this case?
(c) you and the police car are moving toward each other at $14.5 \mathrm{~m} / \mathrm{s}$.

$$
\text { Known: } \quad \begin{aligned}
& f=1125 \mathrm{~Hz} ; v_{\text {source }}=v_{s}=14.5 \frac{\mathrm{~m}}{\mathrm{~s}} \quad v^{v} \\
&=v_{\text {sound }} \\
&=340 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

unknown: $f^{\prime} \equiv$ perceived prequel by stationary observer
Equation: $f^{\prime}=f \frac{v \pm v_{0}}{v \mp v_{s}}$

You and the police car are moving toward each other \Rightarrow choose the upper sign in numerator and denominator:

$$
\begin{aligned}
f^{\prime}=f \frac{v+v_{0}}{v-v_{s}} & =1125 \mathrm{~Hz} \frac{340 \frac{\mathrm{~m}}{\mathrm{~s}}+14.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{340 \frac{\mathrm{~m}}{\mathrm{~s}}-14.5 \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =1225.23 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Cross check: Do you expect a higher frequency in this case?
(d) Yaw are moving at $9 \mathrm{~m} / \mathrm{s}$.

The police car is chasing behind you at $38 \mathrm{~m} / \mathrm{s}$.

Known: $f=1125 \mathrm{~Hz} ; v_{\text {source }}=v_{s}=38 \frac{\mathrm{~m}}{\mathrm{~s}} \quad v=v_{\text {sound }}$

$$
\text { vobserver }=v_{0}=9 \frac{\mathrm{~m}}{\mathrm{~s}} \quad=340 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

unknown: $f^{\prime} \equiv$ perceived frequency by stationary observer
Equation: $f^{\prime}=f \frac{v \pm v_{0}}{v \mp v_{s}}$
you are moving away from the police car \Rightarrow choose the lower (-) sign in numerator.
the police car is moving toward you \Rightarrow choose the upper (-) sign in denominator.

$$
\begin{aligned}
f^{\prime}=f \frac{v-v_{0}}{v-v_{s}} & =1125 \mathrm{~Hz} \frac{340 \frac{\mathrm{~m}}{\mathrm{~s}}-9 \frac{\mathrm{~m}}{\mathrm{~s}}}{340 \frac{\mathrm{~m}}{\mathrm{~s}}-38 \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =1233.03 \mathrm{~Hz}
\end{aligned}
$$

Cross check: Do you expect a higher frequency in this case?

