human eye

iris

The human eye actually has two lenses:

Distant Objects
As the object distance approaches infinity, what number does the quantity $\left(1 / \mathrm{d}_{\mathrm{O}}\right)$ approach?
A. Infinity
B. Zero

$$
\frac{1}{d_{O}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

C. Undefined

When object is "distant" (beyond about 5 or 10 meters?)

$$
\frac{1}{d_{o}}=0 \text { and } \frac{1}{f}=\frac{1}{d_{i}} \text { so } \mathrm{f}=\mathrm{d}_{\mathrm{i}}
$$

Suppose you want a distant object to form an image on the back of the eye. If the eye has a diameter of 1.70 cm , what is the focal length of the combination of the cornea and lens?

$$
\begin{aligned}
\frac{1}{f}=\frac{1}{d_{O}}+\frac{1}{d_{I}} & =0+\frac{1}{d_{I}} \quad \rightarrow \mathrm{f}=1.70 \mathrm{~cm} \\
f & =d_{I} \quad \text { Focal length positive (converging) }
\end{aligned}
$$

accommodation of the eye

near object: the crystalline lens thickens
far away object: the crystalline lens is relaxed

but there is a limit: the "near point" this is the shortest distance of distinct vision

Eye

Eye: focuses by adjusting focal length (accommodation)

accommodation of the eye

near object: the crystalline lens thickens

far away object: the crystalline lens is relaxed

but there is a limit: the "near point" this is the shortest distance of distinct vision

Suppose you want an object at a distance 25 cm from the eye to form an image on the back of the eye. If the eye has a diameter of 1.70 cm , what is the focal length of the combination of the cornea and lens?
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{I}}=\frac{1}{25 \mathrm{~cm}}+\frac{1}{1.7 \mathrm{~cm}} \quad \rightarrow \mathrm{f}=1.59 \mathrm{~cm}$

accommodation of the eye

near object: the crystalline lens thickens
far away object: the crystalline lens is relaxed

but there is a limit: the "near point" this is the shortest distance of distinct vision

Suppose you want an object at a distance 25 cm from the eye to form an image on the back of the eye 1.70 cm from the lens. If the object is 20 cm tall, how tall (in cm) is the image on the back of the eye? (Give the absolute value. Do not include the negative sign.)

$$
\begin{aligned}
& m=-\frac{d_{I}}{d_{O}}=-\frac{1.70 \mathrm{~cm}}{25 \mathrm{~cm}}=-0.068 \\
& m=\frac{h_{I}}{h_{O}} \quad h_{I}=m h_{O}=(-0.068)(20 \mathrm{~cm})=1.36 \mathrm{~cm}
\end{aligned}
$$

accommodation of the eye

> near object: the crystalline lens thickens
far away object: the crystalline lens is relaxed

but there is a limit: the "near point" this is the shortest distance of distinct vision

The eye can only focus on something if it seems to be between the near point and far point.

Some eyes have near points and/or far points that aren't ideal.
Lenses can make things appear closer or farther away.

Near point and far point property of eye independent of corrective lens Normal near point: about 25 cm , far point: ∞

Corrective Lenses - Nearsighted - Myopia

Far point not as far as you'd like ...Need to make distant objects seem closer.

Object

Image clear

Farpoint
-
Nearpoint

So need to find a lens that can be close to the eye that will make a distant object seem to be closer (at far point) Diverging lens
("Map" from distant point to closer point)

As object gets closer, image also gets closer - if image inside near point, things get fuzzy again

Nearsightedness/Myopia - "map" object at infinity to image at far point

Closer objects appear

closer

Example:

An optometrist wants to correct the vision of a nearsighted person by mapping an object at infinity (a distant object) to a virtual image at 50 cm (their far point). What is the focal length of the required lens?

$$
\begin{aligned}
& \left(1 / \mathrm{d}_{0}\right)+\left(1 / \mathrm{d}_{\mathrm{i}}\right)=(1 / \mathrm{f}) \\
& (1 / \infty)+(1 /(-50 \mathrm{~cm}))=(1 / \mathrm{f}) \\
& \mathrm{f}=-50 \mathrm{~cm} \\
& \text { Diverging lens }
\end{aligned}
$$

$$
\begin{aligned}
& \text { In Diopters: } \\
& \begin{aligned}
\text { Refractive Power }= & (1 /-0.5 \mathrm{~m}) \\
& =-2.0 \text { Diopters }
\end{aligned}
\end{aligned}
$$

Corrective Lenses - Farsighted - Hyperopia

Near point not as close as you'd like ...Need to make near objects seem farther away.

So need to find a lens that can be close to the eye that will make a close object seem to more distant (at near point)

What if object further than focal point?
Image becomes real - glasses no longer work

Farsightedness/Hyperopia - map close objects to image at near point

farther objects map farther

Example:

An optometrist wants to correct the vision of a farsighted person by mapping an object at 25 cm to a virtual image at 60 cm (their near point). What is the focal length of the required lens?

$$
\begin{aligned}
& \left(1 / \mathrm{d}_{0}\right)+\left(1 / \mathrm{d}_{\mathrm{i}}\right)=(1 / \mathrm{f}) \\
& (1 / 25 \mathrm{~cm})+(1 /(-60 \mathrm{~cm}))=(1 / \mathrm{f}) \\
& \mathrm{f}=+43 \mathrm{~cm} \\
& \text { Converging lens }
\end{aligned}
$$

$$
\begin{aligned}
& \text { In Diopters: } \\
& \begin{aligned}
\text { Refractive Power }= & (1 /-0.43 \mathrm{~m}) \\
& =+2.3 \text { Diopters }
\end{aligned}
\end{aligned}
$$

Eyeglasses - Bifocals

Both:

- FP not at infinity
- Near point too far away.

Glasses Split

- Look through top - correct for distant objects to be at Far point or closer

Bottom:

- Look through bottom to correct for objects that are too near

