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Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-
distorted basis in momentum space was proposed. Important input quantities for such calculations
are the scattering matrix elements for proton- and neutron-nucleus scattering. We present a gener-
alization of the Ernst-Shakin-Thaler scheme in which a momentum space separable representation
of proton-nucleus scattering matrix elements can be calculated in the Coulomb basis. The viability
of this method is demonstrated by comparing S-matrix elements obtained for p+48Ca and p+208Pb
for a phenomenological optical potential with corresponding coordinate space calculations.

PACS numbers: 24.10.Ht,25.10.+s,25.40.Cm

I. INTRODUCTION

Deuteron induced nuclear reactions are attractive from
an experimental as well as theoretical point of view for
probing the structure of exotic nuclei and as an indi-
rect tool in astrophysics (see e.g. [1]). From a theoret-
ical perspective, (d,p) reactions are attractive since the
scattering problem can be viewed as an effective three-
body problem [2]. One of the most challenging aspects
of solving the three-body problem for nuclear reactions
is the repulsive Coulomb interaction between the nucleus
and the proton. While exact calculations of (d,p) reac-
tions based on Faddeev equations in the Alt-Grassberger-
Sandhas (AGS) [3] formulation can be carried out [4] for
very light nuclei, this is not the case for heavier nuclei
with higher charges. The reason for this shortcoming
is rooted in implementations of the Faddeev-AGS equa-
tions that rely on a screening and renormalization proce-
dure [5, 6], which leads to increasing technical difficulties
in computing (d,p) reactions with heavier nuclei [7].
In Ref. [8], a three-body theory for (d,p) reactions is

derived, where no screening of the Coulomb force is in-
troduced. Therein, the Faddeev-AGS equations are cast
in the Coulomb-distorted partial-wave representation, in-
stead of the plane-wave basis. The interactions in the dif-
ferent two-body subsystems, including the neutron- and
proton-nucleus interactions, are assumed to be of sepa-
rable form.
Separable forms for nucleon-nucleus interactions have

been considered in the past (e.g. [9, 10]), but are usually
of a rank-1 Yamaguchi form and are intended to rep-
resent the nuclear forces up to a few MeV. This is not
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sufficient for scattering of heavy nuclei up to tens of MeV.
In addition, adjusting the parameters of Yamaguchi-type
neutron-nucleus form factors to obtain proton-nucleus
form factors is not very practical when considering a
larger variety of nuclei. Therefore, a systematic scheme
for deriving separable representations for proton-nucleus
optical potentials is needed.

In Ref. [11] we derived a separable representation
of phenomenological neutron-nucleus optical potentials,
based on a generalization of the Ernst, Shakin and Thaler
(EST) scheme for non-hermitian interactions. In Ref. [12]
we presented the first test calculations of form factors in
the momentum-space Coulomb basis, using the neutron-
nucleus interaction developed in [11]. In this work we
generalize these studies for proton-nucleus interactions.

The derivations in the original EST work laid out
in [13] set up the scattering problem in a complete
plane-wave basis, whereas in this work we need to use
a complete Coulomb basis. Consequently, when working
in momentum space, we require a solution of the mo-
mentum space scattering equation in the Coulomb ba-
sis exists. We solve the momentum space Lippmann-
Schwinger (LS) equation in the Coulomb basis, following
the method introduced in Ref. [14] and successfully ap-
plied in proton-nucleus scattering calculations with mi-
croscopic optical potentials in Ref. [15]. We note that
a separable expansion for local potentials with Coulomb
interactions was first derived by Adhikari [16] and ap-
plied to proton-proton scattering. However, it has never
been applied to proton scattering from heavier nuclei.

In Sec. II we sketch the important steps needed to
derive a separable representation of a phenomenological
global optical potential in the momentum-space Coulomb
basis for proton-nucleus scattering. Our numerical cal-
culations of S-matrix elements for proton scattering from
48Ca and 208Pb at selected laboratory kinetic energies are
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discussed in Sec. III, along with the behavior of the form
factors as a function of the external momentum. Finally,
we summarize our work in Sec. IV.

II. FORMAL CONSIDERATIONS

The scattering between a proton and a nucleus is gov-
erned by a potential

w = vC + us, (1)

where vC is the repulsive Coulomb potential and us an
arbitrary short range potential. For the proton-nucleus
system us consists of an optical potential, which describes
the nuclear interactions, and a short-ranged Coulomb
potential, traditionally parameterized as the potential
of a charged sphere with radius R0 of which the point
Coulomb force is subtracted [17]. Since the scattering
problem governed by the point Coulomb force has an ana-
lytic solution, the scattering amplitude for elastic scatter-
ing between a proton and a spin-zero nucleus is obtained
as the sum of the Rutherford amplitude fC(Ep0

, θ) and
the Coulomb distorted nuclear amplitude given by

MCN(Ep0
, θ) = fCN(Ep0

, θ) + σ̂ · n̂ gCN(Ep0
, θ), (2)

with

fCN(Ep0
, θ) = −πµ

∞
∑

l=0

e2iσl(Ep0
)Pl(cos θ)×

[

(l + 1)〈p0 | τCN
l+ (Ep0

)|p0〉+ l〈p0|τ
CN
l− (Ep0

)|p0〉
]

,(3)

gCN(Ep0
, θ) = −πµ

∞
∑

l=0

e2iσl(Ep0
)P 1

l (cos θ)×

[

〈p0 | τCN
l+ (Ep0

)|p0〉 − 〈p0|τ
CN
l− (Ep0

)|p0〉
]

. (4)

Here Ep0
= p20/2µ is the center-of-mass (c.m.) scatter-

ing energy which defines the on-shell momentum p0, and
σl = argΓ(1 + l + iη) is the Coulomb phase shift. The
Sommerfeld parameter is given by η = αZ1Z2µ/p0 with
Z1 and Z2 being the atomic numbers of the particles,
and α the Coulomb coupling constant. The unit vector
n̂ is normal to the scattering plane, and σ̂/2 is the spin
operator. The subscripts ′+′ and ′−′ correspond to a
total angular momentum j = l + 1/2 and j = l − 1/2.
All calculations shown in this work refer to j = l + 1/2.
Suppressing the total angular momentum indices for sim-
plicity, the Coulomb distorted nuclear t-matrix element
is given by 〈p0|τ

CN
l (Ep0

)|p0〉, which is the solution of a
LS type equation,

〈p|τCN
l (Ep0

)|p0〉 = 〈p|us
l |p0〉+ (5)

∫

p′2dp′〈p|us
l |p

′〉〈p′|gc(Ep0
+ iε)|p′〉〈p′|τCN

l (Ep0
)|p0〉.

Here g−1
c (Ep0

+ iε) = Ep0
+ iε − H0 − vC is the

Coulomb Green’s function, and H0 the free Hamilto-
nian. The Coulomb distorted nuclear t-matrix element

〈p|τCN
l (Ep0

)|p0〉 is related to the proton-nucleus t-matrix
〈p|tl(Ep0

)|p0〉 by the familiar two-potential formula

〈p|tl(Ep0
)|p0〉 =

〈p|tCl (Ep0
)|p0〉+ e2iσl(Ep0

)〈p|τCN
l (Ep0

)|p0〉, (6)

where 〈p|tCl (Ep0
)|p0〉 is the point Coulomb t-matrix.

When the integral equation in Eq. (6) is solved in the
basis of Coulomb eigenfunctions, gc acquires the form of
a free Green’s function and the difficulty of solving it is
shifted to evaluating the potential matrix elements in this
basis.
For deriving a separable representation of the Coulomb

distorted proton-nucleus t-matrix element, we generalize
the approach suggested by Ernst, Shakin, and Thaler
(EST) [13], to the charged particle case. The basic idea
behind the EST construction of a separable representa-
tion of a given potential is that the wave functions calcu-
lated with this potential and the corresponding separa-
ble potential agree at given fixed scattering energies Ei,
the EST support points. The formal derivations of [13]
use the plane wave basis, which is standard for scatter-
ing involving short-range potentials. However, the EST
scheme does not depend on the basis and can equally
well be carried out in the basis of Coulomb scattering
wave functions. In order to generalize the EST ap-
proach to charged-particle scattering, one needs to be
able to obtain the scattering wave functions or half-shell
t-matrices from a given potential in the Coulomb basis,
and then construct the corresponding separable represen-
tation thereof.

A. The half-shell t-matrices in the Coulomb basis

In order to calculate the half-shell t-matrix of Eq. (6),
we evaluate the integral equation in the Coulomb ba-
sis as suggested in [14], and note that in this case the
Coulomb Green’s function behaves like a free Green’s
function. Taking |Φc

l,p〉 to represent the partial wave
Coulomb eigenstate, the LS equation becomes

〈Φc
l,p|τ

CN
l (Ep0

)|Φc
l,p0

〉 = 〈Φc
l,p|u

s
l |Φ

c
l,p0

〉+
∞
∫

0

〈Φc
l,p|u

s
l |Φ

c
l,p′〉

p′2dp′

Ep0
− Ep′ + iε

〈Φc
l,p′ |τCN

l (Ep0
)|Φc

l,p0
〉

≡ 〈p|τCN
l (Ep0

)|p0〉, (7)

which defines the Coulomb distorted nuclear t-matrix of
Eq. (6). To determine the short-range potential matrix
element, we follow Ref. [14] and insert a complete set of
position space eigenfunctions

〈Φc
l,p′ |us

l |Φ
c
l,p〉 =

2

π

∞
∫

0

〈Φc
l,p′ |r′〉 r′2dr 〈r′|us

l |r〉 r
2dr 〈r|Φc

l,p〉

=
2

πp′p

∞
∫

0

rr′drdr′ Fl(η
′, p′r′) 〈r′|us

l |r〉 Fl(η, pr). (8)
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The partial wave Coulomb functions are given in coordi-
nate space as

〈r|Φc
l,p〉 ≡

eiσl(p)Fl(η, pr)

pr
, (9)

where Fl(η, pr) are the standard Coulomb functions [18]
and η(η′) is the Sommerfeld parameter determined with
momentum p(p′).
For our application we consider phenomenological op-

tical potentials of Woods-Saxon form which are local in
coordinate space. Thus the momentum space potential
matrix elements simplify to

〈Φc
l,p′ |us

l |Φ
c
l,p〉 =

2

πp′p

∞
∫

0

dr Fl(η
′, p′r)us

l (r)Fl(η, pr).(10)

We compute these matrix elements for the short-range
piece of the CH89 phenomenological global optical po-
tential [17], which consists of the nuclear and short
range Coulomb potential. The nuclear potential is
parameterized using Woods-Saxon functions. For the
short range Coulomb interaction, the potential of a uni-
formly charged sphere is assumed, from which the point
Coulomb force is subtracted. The integral can be carried
out with standard methods, since us

l (r) is short ranged
and the coordinate space Coulomb wavefunctions are well
defined. The accuracy of this integral can be tested by
replacing the Coulomb functions with spherical Bessel
functions and comparing the resulting matrix elements
to the partial-wave decomposition of the semi-analytic
Fourier transform used in [11]. For the cases under study,
and a maximum radius of 14 fm, 300 grid points are suf-
ficient to obtain matrix elements with a precision of six
significant digits.

B. EST representation of the proton-nucleus

t-matrix in the Coulomb basis

Extending the EST separable representation to the
Coulomb basis involves replacing the neutron-nucleus
half-shell t-matrix in Eqs. (14)-(16) of Ref. [11] by the
Coulomb distorted nuclear half-shell t-matrix. This leads
to the separable Coulomb distorted nuclear t-matrix

τCN
l (Ep0

) =
∑

i,j

us
l |f

c
l,kEi

〉 τcij(Ep0
) 〈f c∗

l,kEj
|us

l , (11)

with τcij(Ep0
) being constrained by

∑

i

〈f c∗
l,kEn

|us
l − us

l gc(Ep0
)us

l |f
c
l,kEi

〉τcij(E) = δnj (12)

∑

j

τCN
ij (Ep0

) 〈f c∗
l,kEj

|us
l − us

l gc(Ep0
)us

l |f
c
l,kEk

〉 = δik .

Here |f c
l,kEi

〉 and |f c∗
l,kEi

〉 are the regular radial scatter-

ing wave functions corresponding to the short range po-
tentials us

l and (us
l )

∗ at energy Ei. The constraints of

l separable p-space r-space

0 -0.0512 0.3765 -0.0518 0.3768 -0.0523 0.3767
2 0.3805 0.0420 0.3809 0.0421 0.3808 0.0427
6 -0.0445 0.0170 -0.0457 0.0118 -0.0462 0.0111

10 0.9818 0.0248 0.9814 0.0253 0.9814 0.0253

TABLE I. The partial wave S-matrix elements obtained from
the CH89 [17] phenomenological optical potential for j= l +
1/2 for selected angular momenta l calculated for p+48Ca
elastic scattering at Elab = 38 MeV.

Eqs. (13) ensure that, at the EST support points, the ex-
act and separable Coulomb distorted nuclear half-shell t-
matrices are identical. We want to point out that the gen-
eralization of the EST scheme to complex potentials [11]
is not affected by changing the basis from plane waves
to Coulomb scattering states. The separable Coulomb
distorted nuclear t-matrix elements are given by

〈p′|τCN
l (Ep0

)|p〉 ≡
∑

i,j

hc
l,i(p

′)τcij(Ep0
)hc

l,j(p) =

=
∑

i,j

〈Φc
l,p′ |us

l |f
c
l,kEi

〉τcij(Ep0
)〈f c∗

l,kEj
|us

l |Φ
c
l,p〉, (13)

where the form factor

hc
l,i(p) ≡ 〈Φc

l,p|u
s
l |f

c
l,kEi

〉 (14)

= 〈f c∗
l,kEi

|us
l |Φ

c
l,p〉 = 〈p|τCN

l (Ei)|kEi
〉

is the short-ranged half-shell t-matrix satisfying Eq. (7).
For our analysis, and the comparison with coordinate-
space calculations, we consider the partial-wave S-matrix
elements, which are obtained from the on-shell t-matrix
elements by the relation
Sl(Ep0

) = 1− 2πiµp0〈p0|τ
CN
l (Ep0

)|p0〉.
Evaluating the separable Coulomb distorted proton-

nucleus t-matrix involves integrals over the proton-
nucleus form factor hc

l,i(p). If the short range Coulomb
potential is omitted, the functional behavior of the
proton-nucleus potential is similar to the one of the
neutron-nucleus one, and thus the numerical integration
can be carried out as discussed in [11]. However, if it
is included, the proton-nucleus form factor falls off more
slowly as function of momentum. This implies that larger
maximum momenta and an increased number of grid
points are necessary to obtain a separable representation
of the Coulomb distorted proton-nucleus t-matrix with
the same accuracy as the separable representation of the
neutron-nucleus t-matrix.

III. RESULTS AND DISCUSSION

For studying the quality of the separable representa-
tion of t-matrices for proton-nucleus optical potentials we
consider p+48Ca and p+208Pb S-matrix elements in the
range of 0-50 MeV laboratory kinetic energy. We use the
CH89 global optical potential [17] and its rank-5 separa-
ble representation in all calculations. The same support
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FIG. 1. (Color online) The partial wave S-matrix for p+208Pb
elastic scattering obtained from the CH89 [17] global opti-
cal potential as function of angular momentum j = l + 1/2.
Panels (a) and (b) show the real and imaginary parts of the
S-matrix at Ep = 10 MeV and panels (c) and (d) provide
the same information at Ep = 45 MeV: (i) S-matrix elements
calculated from the separable representation (crosses); (ii) co-
ordinate space calculation (open circles); (iii) the calculation
in which the short-range Coulomb potential is omitted (open
diamonds) and (iv) S-matrix elements for n+208Pb elastic
scattering (filled circles).

points used for the neutron-nucleus separable represen-
tation (summarized in Table I of [11]) provide a descrip-
tion of equal quality for the proton-nucleus S-matrix el-
ements. This is demonstrated for p+48Ca scattering at
38 MeV laboratory kinetic energy in Table I, which gives
the S-matrix elements calculated with the separable rep-
resentation of the Coulomb distorted proton-nucleus t-
matrix, together with the corresponding direct calcula-
tions performed either in momentum or coordinate space.

Similar results for the p+208Pb S-matrix elements are
shown in Fig. 1. The top two panels (a) and (b) show
the real and imaginary parts of the S-matrix elements
at 10 MeV laboratory kinetic energy while the bottom
two panels (c) and (d) show the real and imaginary parts
of the S−matrix elements at 45 MeV. At 10 MeV the
partial-wave series converges much faster, thus we do
not show matrix elements beyond l = 12. First, we
note that the momentum space S-matrix elements cal-
culated with the separable representation (crosses) agree
perfectly with the corresponding coordinate-space calcu-
lation (open circles).

To illustrate the effects of the short-range Coulomb
potential on the S-matrix elements, we show a calcula-
tion in which this term is omitted (open diamonds). As
indicated in Fig. 1, only the low l partial waves are af-
fected. To demonstrate the overall size of all Coulomb
effects for 208Pb, we also plot the corresponding n+208Pb
S-matrix elements at the same energies (filled circles).
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FIG. 2. (Color online) The real parts of the partial wave
proton-nucleus form factor for 48Ca as function of the mo-
mentum p for selected angular momenta l: (a) l = 0, (b)
l = 3, and (c) l = 6. The form factors are calculated at
Ec.m. = 36 MeV and based on the CH89 global optical po-
tential: full calculations (i) are compared to those omitting
the short range Coulomb (ii), the neutron-nucleus form factor
(iii) and the Coulomb distorted neutron-nucleus form factor
(iv).
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FIG. 3. (Color online). Same as Fig. 2 but for 208Pb. The
form factors for l = 0 (a) and l = 4 are calculated at
Ec.m. = 21 MeV but for l = 8 (c) these are calculated at
Ec.m. = 36 MeV.

The differences between the crosses and the filled circles
demonstrate the importance of the correct inclusion of
the Coulomb interaction.

Next we examine the form factors of the separable rep-
resentation in detail. In Fig. 2 we compare p+48Ca form
factors for selected angular momenta calculated with the
proton-nucleus potential and the short-range Coulomb
potential (i) to those calculated with the proton-nucleus
potential alone (ii), as well as the n+48Ca (iii). In addi-
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tion we show the Coulomb distorted n+48Ca form factor
(iv) obtained with the techniques introduced in [12] to il-
lustrate that a Coulomb distorted neutron-nucleus form
factor differs from the corresponding Coulomb distorted
proton-nucleus form factor. First, we observe that, with
the exception of l = 0, the form factors already vanish
at 3.5 fm−1. For l = 0, comparing the solid and dashed
lines, we see that the short-range Coulomb potential sig-
nificantly modifies the nuclear form factor. The effects of
the short-range Coulomb potential quickly decrease as l
increases.
In Fig. 3, we show a similar calculation for the 208Pb

form factors. With the larger charge, the overall observa-
tions are maintained but magnified. For l = 0, the short
range Coulomb force creates a very slow fall-off of the
proton form factor, and only for l = 8 is the short-range
Coulomb potential sufficiently weak to produce a negligi-
ble effect on the proton-nucleus form factor. Again we see
that for the angular momenta shown, the Coulomb dis-
torted neutron-nucleus form factor does not resemble the
Coulomb distorted proton-nucleus form factor, empha-
sizing the need for a proper introduction of the Coulomb
force in the EST scheme.

IV. SUMMARY AND CONCLUSIONS

We have generalized the EST scheme [11, 13] so that
it can be applied to the scattering of charged particles
with a repulsive Coulomb force. To demonstrate the
feasibility and accuracy of our method, we applied this
Coulomb EST scheme to elastic scattering of p+48Ca
and p+208Pb. We found that the same EST support
points employed to obtain the neutron form factors can
be used for the separable representation of the proton-
nucleus potential. We showed that the momentum-space
S-matrix elements calculated with the separable repre-
sentation of the Coulomb distorted proton-nucleus po-

tential agree very well with the corresponding coordinate-
space calculation. Since changing from a plane wave to a
Coulomb basis preserves the time reversal invariance of
the separable potential, the separable Coulomb distorted
proton-nucleus off-shell t-matrix also obeys reciprocity.
We also studied the effects of the short-range Coulomb

potential on the proton-nucleus form factor. We found
that, with the exception of the lowest partial waves (l =0,
1 for 48Ca and l= 0, 1, 2 for 208Pb), the form factors
already vanish at 3.5 fm−1. For the lowest partial waves
the short range Coulomb force creates a very slow fall-
off for the proton-nucleus form factor at high momenta.
The effects of the short-range Coulomb potential quickly
decrease as l increases and almost vanish for l=6 (48Ca)
and l =8 (208Pb).
In addition, we demonstrated that the proton-nucleus

form factor is very different from the Coulomb distorted
neutron-nucleus form factor computed according to [12].
Thus, when applying those form factors in a A(d,p)B
Faddeev calculation, it will be mandatory to evaluate
neutron and proton-nucleus form factors separately.
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