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Rings Having One-Sided Ideals Satisfying a Polynomial Identity

By

S. K. Ja1x and SURJEET SINGH

Introductiou. The problem of determining the structure of a ring in which certain
special subset satisfies a polynomial identity has recently found interest with some
authors including AMITSUR, HERSTEIN, MARTINDALE and BELLUCE [9, 16, 17 and 3].
It is shown by BeLLUCE and JaIx [3] that if B is a prime ring which possesses a
non-zero right ideal 4 with a polynomial identity then R satisfies a polynomial
identity if any of the following conditions hold: (1) {{(4) = 0, (2) R is a right Goldie
ring. The object of the present paper is to study rings, not necessarily prime, which
possess a non-zero right ideal A satisfving a polynomial identity. In contrast to the
prime case, examples are given to show that (i) a ring R may possess a two-sided
ideal A with a polynomial identity and [(A4) = 0 but the ring itself may not satisfy
any polynomial identity and (ii) a Goldie ring may fail to possess a polynomial identity
even though it possesses a two-sided ideal with a polynomial identity. Section 3 is
devoted to sharpen some of the results proved earlier f:r prime rings [3, 4]. Sufficient
conditions are obtained in sections ¢ and 3 that the maximal quotient rings of semi-
prime rings and artinian rings satisfy a polynomial identity, whenever they possess
a non-zero right ideal 4 such that A satisfies a polynomial identity and I{4) = 0.

1. Preliminaries and Definitions. For a ring R the symbols M2, R2, Ls(R), L> (R)

and R respectively will denote as usual the singular submodule of an R-module M,
the right singular ideal, the lattice of all closed right ideals, the lattice of all large
right ideals and the maximal (right) quotient ring in the sense of Jomnsox [13] and
we denote by ls(X) the left annihilator of a subset X of R in a subset S of R. It

is known that if Ris a ring with B2 =0, then R can be looked upon as UHomR(A, R),

where A is a large right ideal of R, and further E is a (Von-Neumann) regular ring
which as a right R-module is the unique maximal essential extension of R as an

R-module [11]. Thus by EckManN and ScHOPF [5] R is also injective as a right
R-module. It is also proved by Jouxsox and Woxa ([14], theorem 7) that Ris right
self-injective. Therefore by Jornson ({12], p. 542) each closed right ideal of ff is
a direct summand of R. But this implies each member 4 of Ls(ﬁ) is also injective as
a right R-module. Hence A is injective hull of 4 N R [5]. The lattices of closed right
ideals of R and R are known to be isomorphic by the mapping 4 - AN R ([12],
theorem 6.8). The maximal quotient ring of a semi-prime Goldie ring is known to
coincide with the classical quotient ring (cf. theorem 4.4, [13]).
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We also recall the definition of a quasi-standard identity [4]. A ring R is said to
satisfy a quasi-standard identity (QSI) of degree d if for each d-tuple (r(, ..., ry)
there exist a positive integer n such that

(Z e ""y(d))" =0,
g

where the summation runs over all the permutations gof1,... dand the sign is
positive or negative according as the permutation is even or odd. It was shown in
(4] that a prime ring with a right singular ideal zero and uniform right ideals is
a right Goldie ring if it has a quasi-standard identity. We shall obtain this result
as a corollary to one of the theorems proved below.

Throughout this paper we assume that R is an algebra over a field F. If 4 is a
non-zero right ideal satisfying some polynomial identity of degree d and Ig(4) = 0,
then since AR is an algebra right ideal contained in A and Ig(AR) = 0, we can
assume that 4 is an algebra right ideal with a polynomial identity and I (4) = 0.

2.1. Example (AM1Tsur). Let D be a division algebra infinite dimensional over its
center C. Consider the ring R of all triangular matrices of the form (g Z), where

@ and y are in D and k is in C. R has the Jacobson radical

N= {(8 g):yeD}, =0 and RN~D@C.
Therefore R/N is semi-simple artinian and it satisfes no polynomial identity since
D cannot satisfy any polynomial identity. Consequently, R cannot satisfy any poly-
nomial identity. But R has an ideal

O y
A={<O Z):yeD, keC}

such that (i) Ig(4) = 0 and (ii) A satisfies the identity (X;X» — X5X,)2 = 0.

2.2. Example. Let D be an infinite dimensional algebra over its center C. Let F
be any field. Then D @ F is a Goldie ring having a two-sided ideal satisfying a poly-
nowmial identity, However D @ F satisfies no polynomial identity.

3. Prime Rings. We give a relationship between the degrees of polynomial identities
satisfied by the right ideal 4 in a prime ring R and the ring R in the theorem 1 of [3].
We will also need this result later on in sections 4 and 5.

3.1. Theorem. Let R be a prime ring. If A is a non-zero right ideal satisfying a poly-

nomial identity of degree d and lr(4) =0, then R satisfies a standard tdentity of

degree d.

Proof. Since 4 is a prime ring by itself, therefore, by Posxer (18] the quotient
ring of A exists and it satisfies same multilinear identities as satisfied by 4. But 4
satisfies a multilinear identity of degree d’ < d. Because the quotient ring of 4 is
semi-simple artinian, by AMrITsur [1], the quotient ring satisfies a standard identity
of degree d’. It is shown in the proof of theorem 1 in [3] that R is embeddable in the
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quotient ring of 4. Hence R satisfies a standard identity of degree d’. But then R
also satisfies a standard identity of degree d, because d’ < d.

We now prove that the maximal quotient ring satisfies a generalized polynomial
identity (for definition see Ayrrsur [2]).

3.2. Theorem. Let R be a prime ring such that R has a zero right singular ideal and
has uniform right ideals. If there exists a non-zero right ideal 4 in R such that A satisfies
a quasi-standard identity then the maximal quotient ring of R satisfies a generalized
polynomial identity.

Proof. It is well known that under the given conditions on R, each right ideal
contains a uniform right ideal. Let U be a uniform right ideal in 4. Then U has QSI.
Let f be a mapping of U to Homg(U, U), given by a — I, where I; denotes the left
multiplication by @, f is then a non-zero homomorphism and f(U) is a left ideal in
Hompg (U, U). Thus K = Homg (U, U) which is an integral domain has a left ideal
with QSI. But this implies K has a left ideal with ST and hence by thcorem 3.1
K has SI. Thus by Axtrsvr K has SI. But by Farrt and Uruwr [cf. 6],

K= Homﬁ(ﬁ, ﬁ) = Homﬁ(eﬁ,eﬁ) =eRe.

This implies the minimal right ideal eR hasa polynomial identity and hence R has
a generalized polynomial identity.
We deduce a result which is proved in [4] by using weak transitivity of R.

Corollary. If the ring R satisfies a quasi-standard identity then the maximal quotient
ring satisfies a polynomial identity and hence is a finite dimensional central simple
algebra.

Proof. If I is a minimal right ideal in R, then U = I \ R is a uniform right
ideal of R such that U = I. Following the proof in the theorem we can show that
each minimal right ideal of R satisfies the same polynomial identity. Hence the socle
has a polynomial identity. Since the maximal quotient ring is also prime, it follows
by theorem 3.1 that it also satisfies a polynomial identity. This proves the corollary.

4. Semi-prime Rings. Lemma 1.1. which follows is well known (cf. LEVY [15]).

4.1. Lemma. If a semi-prime ring T has acc on annihilator ideals then the set M of
annihilator (two sided) ideals contains only a finite number of maximal members whose
intersection ts zero.

4.2. Theorem. If R is a semi-prime ring which has acc on annikilator two sided
ideals and if there exists a non-zero right ideal A satisfying a polynomial identity such
that Ig(A) = 0, then the mazimal quotient ring of R also satisfies a polynomial identity.

Proof. Let B be any two sided ideal of R. If for any a in R, Ba = 0, then for
any o in F, B(ax) = 0. Therefore, annihilator ideal is an algebra ideal. By 4.1 there
exist a finite number of distinct maximal annihilator ideals, say, 4, ..., 4, with
zero intersection. Thus R; = R/A; is a prime ring which is an algebra over F. If g,
is the natural homomorphism of R onto R;, then it is easy to prove that g, (g;(4)) =0.

o
P
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Thus by theorem 3.1, R; satisfies a standard identity of degree d. By Posxer [18],
the classical quotient ring @ (R;) (which is same as ff,- [13]) exists and satisfies the
same identity. Following the lines of proof of theorem 4.7 in [8], we can show that
Q(R) exists and is isomorphic to @ZQ(R[). Consequently, Q(R) also satisfies a
standard identity. Now each Q(R;), we know, is simple artinian. Hence by (7],
theorem 4.4, Ris a semi-prime Goldie ring. But by Jonxsox [13], R= @ (R). This
completes the proof.
A consequence of the above is the following result proved by SmaLr [19].

Corollary. If the ring R satisfies a polynomial identity, then the classical quotient
ring Q(R) also satisfies a polynomial identity.

Our next theorem is concerned with a semi-prime ring having its socle as a large
right ideal. The proof depends on the following lemma which is interesting by itself.

4.3. Lemma. If T is any semi-prime ring such that its socle X is a large right ideal,
then .
T =T [Homy,(X;, X)),
i

where X; are the homogeneous components of the socle of T.

Proof. Since each right ideal of 7 contains an idempotent, 7'® = 0. Further
the socle X is a large right ideal of 7', therefore X& — 0 and hence the maximal
quotient ring of X and that of 7 are same. But in a semi-prime ring a minimal
right ideal is also a minimal right ideal of its socle (as a ring). Therefore the socle
X of T is completely reducible as a right X-module. Consequently, each right ideal
of Xis a direct summand of X. Therefore if 4 is a large right ideal of X then 4 = X, But
X= UHomX(A, X) where 4 is a large right ideal of X. This gives X= Homy (X, X).
Let X = @ZX, , where X; are the homogeneous components of X. Therefore,

Homy (X, X) [ [Homy (X;, X) = [[Homy (X, X).

But X; is a direct summand of X, therefore, Homy(X;, X;) = Hompy, (X;, X;).
Hence Homy (X, X) :HHomx‘(X;, X;). This completes the proof.

Remark. It is worth noticing that in the above lemma, semi-primeness of 7' can
be replaced by 74 = 0 and each. minimal right ideal of T is a minimal right ideal
of X (as a ring).

4.4. Theorem. Let R be a semi-prime ring such that its socle is a large right ideal.
If there exists a non-zero right ideal A satisfying a polynomial identity of degree d and
Ir(4) = 0, then the maximal quotient ring of R satisfies a standard tdentity of degree d.

Proof. Let A be the given right ideal with polynomial identity of degree d such
that Ip(d) = 0. Let 4, — 4 N Sy, where S; are the homogeneous components of S.
Let x; be in S; such that x4y = 0. This implies Tt(Z A;) = 0. Therefore z; 4 = 0,

)

because trivially ZA, c’d ie. 4 is an essential extension of ZA, as R-modules
7 i
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and further R4 = 0. But then z; = 0. Hence Is,(A¢) = 0. Since S, is a simple ring,
by theorem 3.1, S satisfies a standard identity of degree d. Hence S; is a full matrix
ring D{) over a division ring D®. This implies Homg,(S;, S) is isomorphic to S,
and thus satisfies a standard identity of degree d. If we apply lemma 2 to R, we
obtain R = n Homyg, (S¢, S;). Consequently R satisfies a standard identity of
degree d. ¢

The following simple example shows that the hypothesis in the above theorem is
sufficient but not necessary.

4.5. Example. Let Z be the ring of integers and F be a field. Then R = F @7
is a semi-prime ring with a polynomial identity but the socle is not large.

6. Artinian Rings. We assume now that R is a right artinian ring with zero right
singular ideal. Let S denote the (right) socle of R, which is a large right ideal in R.

5.1. Lemma. Any minimal right ideal I of R is a minimal right ideal of S and
conversely. '

Proof. Let I be any minimal right ideal of R. Let 0+ z € I. Then z8 + 0, since
R4 = 0. Therefore xS is a non-zero right ideal of R contained in I. Thus z§ = [
and this gives that I is & minimal right ideal of S. Conversely let J be a minimal
right ideal of 8. Then again J.S + 0, JS c J and therefore JS = J. But JS is a right
ideal of R. Therefore J is also a minimal right ideal of R.

5.2. Lemma. Any minimal right ideal of R contained in a homogeneous component
S¢ of 8 is a minimal right ideal of S; and conversely.

Proof. It follows frpm lemma 5.1 and the fact that S; is a direct summand of S.

5.3. Lemma. § = R = Homg(S,8) = @ 2‘§h where S; are homogeneous compo-
nenis of S.

The proof follows from the 5.2 and the remark following 4.3.
We are now in a position to prove one of the main results of this paper.

6.4. Theorem. Let R be a right artinian ring such that it has a zero right singular
sdeal. If there exist a non-zero right ideal A salisfying a polynomial identity and ip(A4) =0
then the marimal quotient ring of R satisfies a polynomial identity and is therefore a
finite direct sum of finite dimensional ceniral simple algebras.

Proof. Let 4¢ = A N 8¢ where 4 is the given right ideal with polynomial identity.
It follows on the same lines as in the proof of theorem 4.4 that Is,(A¢) = 0. Now
Sy is a finite direct sum of mutually isomorphic right ideals of R (and therefore of
Sy because of lemma 5.2). Let §; = @ D Ay, where Ay are minimal right ideals

i
of §¢ which are isomorphic to each other. Each Ay is a direct summand and therefore
it is a closed right ideal of S;. In the lattice Ls (Ss) of closed right ideals of S;, we
have S; = V Ay an irredundant decomposition into atoms of L¢ (S¢). Let By be

j A
the members of L#(S;) corresponding to Ay in the isomorphism between the lattices
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Ls(S) and Ls(gi). Then we get »§i =V By an irredundant decomposition of §,
a ~ 7
into atoms of Ls(S;). This gives S; = @ 2 By As explained in section 2, each By;

is injective hull of 4;; as R-module. Thus é’u are mutually isomorphic as B-modules.
But B2 = 0 implies that they are mutually isomorphic as B-module. Hence §i 18
a direct sum of finite number of mutually isomorphic minimal right ideals of 3.
Since §; is also regular it is a full matrix ring over a division ring

D® = Homg,(By;, By)

where B;; is a minimal right ideal of ;.

But if f e Homg, (B, Byj), then restricting f to the irreducible S;-module Ais, we
have f(44) =0 or f(Ai) is isomorphic to Ay Since By is also uniform as an S;-
module, Ay N f(Ay)+0, when f(443)+ 0. Thus Aij = f(A4y). Further if f is in
Homg, (A4, Ay) then f can be uniquely extended to HOmS‘(ij, By;), because By
is injective hull of A4 as S;-module and trivially singular submodule of A5 is zero.
Hence Homg, (4, Ay) = Homg, (B, By;). However,

Homg, (B, By) = Homyg,(By, By),

since 82 = 0. Therefore we obtain Homg, (4 i, Ayy) = Homg, (By;, B;j) = D,

Let N; be the radical of 8;. N; is nilpotent. Thus 4, ¢ Ny, as ls,(4;) = 0. Hence
there exists a minimal right ideal I; of Sy contained in A¢ such that I; N Ny = 0.
Then I; = ¢;8; for some idempotent ¢; in S; and we have

D) = Homs‘ (A{j, A{j) = HOmS‘(If, I{) = €&; Si €.
Now e;Sie; C 4;C A. Therefore eiSie; satisfies same PI as satisfied by 4. Con-
sequently D® also satisfies a PI. Then KAPLANSEY’s theorem states that D® js
finite dimensional over its center. Then §; = DY) is also finite dimensional over
its center and S; satisfies some standard identity of degree say m;. If we set

m = max(my, me, ..., mg),

then each S; satisfies the standard identity of degree m. Now by lemma 5, R —
= @ZS;. Hence R also satisfies the standard identity of degree m.

Acknowledgement. The authors wish to express their thanks to Professor S. A.
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