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NONSINGULAR SEMIPERFECT CS-RINGS II

S. K. JAIN, P. KANWAR, AND SERGIO R. LOPEZ-PERMOUTH

ABSTRACT. In this paper we obtain the precise structure of right
nonsingular semiperfect right CS-rings. It is shown that such rings
are direct sums of certain specific block matrix rings.

1. INTRODUCTION

Rings in which each closed right ideal is a direct summand have been
studied by many authors. Such rings are called right CS-rings. Nonsin-
gular right CS-rings have been considered by Chatters and Hajarnavis
([2]), Chatters and Khuri ([3]), Barthwal et. al. ([1]) and others. In
this paper we continue the study of right nonsingular semiperfect right
CS-rings and obtain their structure, in general (Theorem 3.4). As par-
ticular cases we obtain the structure theorems in [1] and [2].

2. NOTATION AND PRELIMINARIES

Throughout this paper, unless otherwise stated, all rings have unity
and all modules are right unital. For any two R-modules M and N,
M is said to be N-injective if for every submodule K of N, any R-
lfl\omomorphism ¢ : K — M can be extended to an R-homomorphism
¢ : N — M. Equivalently, for any R-homomorphism ¢ : N — E(M),
where E(M) is the injective hull of M, ¢(IN) C M. M is said to be self-
injective if it is M-injective. Self-injective modules are also commonly
called quasi-injective modules. A submodule N of M is said to be
essential in a submodule N¢ of M with N¢ O N, denoted by N C. N°¢,
if for any nonzero submodule L of N¢, N N L # 0. Moreover, in this
case N¢ is called an essential extension of N in M. A submodule K
of M is said to be essentially closed (or simply closed) in M if for any
essential extension K¢ of K in M, K¢ = K. M is called a CS module
if every submodule of M is essential in a direct summand of M, or
equivalently, if every closed submodule of M is a direct summand of
M. CS-modules have also been called extending modules (c.f. [4]) in

Date: March 15, 1998.

1991 Mathematics Subject Classification. 16L30, 16D70.

Key words and phrases. Semiperfect rings, artinian rings, CS-rings.
1

427



JAIN, KANWAR, AND LOPEZ-PERMOUTH

the literature. If M has finite uniform dimension, then M 1is CS if and
only if every uniform closed submodule of M is a direct summand of
M ([4], Corollary 7.8).

A ring R is said to be a right CS-ring if the right module Rp is CS.
R is semiperfect if it has a complete set {e;} , of primitive orthogonal
idempotents such that each e;Re; is a local ring. R is said to be right
nonsingular if its right singular ideal Z(Rg) = {r € R | r] = 0 for some
essential right ideal I of R} is zero. The term regular ring will mean
von Neumann regular ring. R is said to be a right valuation ring if for
any two right ideals I and J either I C J or J C I. A left valuation
ring is defined similary.

>From now on, unless otherwise stated, R will denote a right non-
singular semiperfect ring. Thus there exists a complete set {e;}7 ;of
orthogonal idempotents in R where each e;Re; is a local ring. In addi-
tion, Q = Q. (R) will denote right maximal quotient ring of R.

The following Lemmas are from [1]. We state them here without
proof for convenience.

Lemma 2.1. ([1], Lemma 3.1) If R is a right CS-ring, then each e;R
s a uniform right ideal and e; Re; is a local domain.

Lemma 2.2. ([1], Lemma 3.2) If R is right CS-ring and e;R 1is not
embeddable in e; R, then e; R ts e;R-injective.

Corollary 2.3. If R is indecomposable right CS-ring and e;R is not
embeddable in e;R then e;Re; = e;Qe;. In particular, e;Re; # 0 and
50 e;R is embeddable in e;RR.

Proof. By Lemma 2.2, e;R is e;jR-injective. Thus for every ¢ € @
and r € R, e;geje;r € e;R. In particular, e;ge; € e;R and hence
e;Re; = eiQe;. Since R is indecomposable, e;Q) =~ ¢;(Q) for all 7 and j.
Thus e;Qe; and hence e;Re; is nonzero. §

The proof of the next corollary is immediate from Corollary 2.3.

Corollary 2.4. If R is an indecomposable right CS-ring then for 1 <
i,7 < n cither e;Re; # 0 ore;Re; # 0.

3. STRUCTURE OF SEMIPERFECT CS-RINGS

In this section we obtain the structure of right nonsingular semiper-
fect right CS-rings. We begin with a simple observation.

Remark 3.1. Suppose R is a right CS-ring. By Lemma 2.1 eache; R is
uniform and e;Re; is a local domain. Write R = (P e;R)®(Pe;R)®

i€l i€l
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NONSINGULAR SEMIPERFECT CS-RINGS 11

... (DeiR), where for alli € 1, and j € 1,, &;Q =~ €;Q if and only if
i€l
u = v. It is not hard to see that R = ((Pe;R) (D e:R)®..o(PeR)
i€ly i€l i€l
is a ring decomposition of R. In view of this we will henceforth assume

that the ring R is indecomposable. Thus, Q is a simple artinian ring
and e;Q ~ e;Q for alli and j.

Remark 3.2. It is well known that the lattice L*(Q) of closed right
ideals of Q) is isomorphic to the lattice L*(R) of closed right ideals of
R under the correspondence A — AN R. Thus the uniform closed
right ideals of R arc precisely those of the form eQ N R where eQ
is any minimal right ideal of Q. If Q = Myp(D) then any minimal,
(equivalently uniform closed), right ideal I of Q is of the form

axy airy ... ai1T,
a9T1 QA9T9 ... QA9T, .

I= " |a:_,~€D,1§]_<_n
ApTy ApTy ... Aply,

for some fized a; € D, 1 < i < n, not all of which are zero. This fact
will play a crucial role in the proof of our main structure theorem.

As stated earlier there exists an independent family F = {e;R |1 <
i < n} of indecomposable right ideals such that R = &> e;R. Renum-

=1

bering, if necessary, we may write R = [, R @ [e2R] ® ... ® [ex R] where
[e; R] denote the direct sum of those indecomposable right ideals in F
which are isomorphic to ¢; R. By Corollary 2.4, for 1 < i,7 < k with
1 7£ j, either €,'R€j 7é 0 or CjRG,‘ 7é 0, that iS, either HO’I’TL(CJ'R, CiR) 7& 0
or Hom(e;R, e;R) # 0. Among all diagrams of right ideals ¢;R, 1 < i <
k with nonzero R-homomorphisms, let e;, R — €;,R — ... > ¢; Rbea
diagram with largest length r where i,, 79, ...i, are all distinct. We claim
that r = k. If not, consider e; R € F\{e; R,e;,R, ...,e; R}. Clearly,
Hom(e; R,e; , R) = 0 and Hom(e; ,,R,e;, R) = 0. By Corollary 2.4,
Hom(e, R, e; ,,R) # 0 and Hom(e, ,, R, e; R) # 0. Consequently, we
get the diagram

e, — e, R — .. — e R

e; It

with nonzero maps. Now, if Hom(e; , R, e;,R) # 0, then we get a
longer diagram

eilR —r 6,;r+1R — e,-zR - ... eirR
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with nonzero maps, a contradiction. Thus Hom(elr wR,e,R) = 0.
Then Hom(e;,R,e; ,,R) # 0 and we continue in a similar manper to
obtain Hom(e; ,,R,e; R) = 0, a contradiction. Thus r = k. Renum-
bering again, if necessary, we can assume that the largest diagram with
nonzero maps Is

6];R — 6k_1R — ... elR.

Thus for all 7,j with 1 <1 < j <k, e;Re; # 0. Under this ordering,
if for some i > j, e;Re; = 0 then ¢;Re,, = 0 foralll > i and m < j.
To see this, let ¢, Re,, # 0 for some [ > i and m < j. Since ¢;R’s are
uniform, e;Re; # 0, and e, Re; # 0 we get (e;Re;)(e;Rey,)(emRe;) # 0,
that is, e;Re; # 0, a contradiction. Further since e, Re; = e,(Qe; and
e ~ e,Q for all u and v, it follows that for all [ > 7« and m < 7,
emRe; ~ exQex (as additive groups).

Theorem 3.1. Suppose R is an indecomposable right nonsingular sem:
perfect right CS-ring. Then there exists a division ring D and positive
integers ny,No, ..., g such that

Mn1 (Dll) Mnlxng(Dl2) A’[nlxnk(D]k)
Muyxny (D) Mp;(D22) oo e Muyxn (Dax)
Mnk_lxnl (Dk—~11) A!nk_lxnz(Dk—12) Alnkklxnk(Dk—lk)

A/Inkxnl (Dkl) A/[nkxnz(Dk‘Z) J]\'/[m‘,(l)kk)

where for each 1,1 < 1 < k, D; ts a local domain contained in D,
fori,j withl < i, <k, D;; is an additive subgroup of D such that
DDy C Dy for1 <1 < k. Furthermore, (i) for 1 < i < 5 <k,
D;; #0, (it) fori> j if D;; =0 then for alll > i and m < j, Dy, = 0
and Dy = D, (11) if for any i, n; > 1 then for every ¢ € D either
¢ € Dy; or ¢! € Dy, or equivalently, M, ,(D;;) is a right CS-ring (in
this case D;; is, indeed, a right and left valuation domain having D as
its right and left classical quotient ring, (w) if for 1 < i,7 < k with
1 # j, D;;j and Dj; are both nonzero then for every c € D either ¢ € D;;
orc™t € Dy, (v) for 1 <i <k, the injective hull of Dy as right Dy -
module is D, in particular, Dy ts always a right Ore domain with D
as its right classical quotient ring.

Proof. With the notation preceding this theorem, R = [e,R] & [es R] ®
.. @ lexR] where for all i,j with 1 < i < j < k, ¢;Re; # 0. For
1 < i < k, let n; denote the number of direct summands in [e; R]. Then
R ~ (My,xn,(€:Re;)), a k x k block matrix ring. Let D = exQe;. D
1s a division ring. Let 0 # ¢ € Q and for 1 < i < k, let 8; = exqe;.
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Because e;() ~ €;(, there exists a unique e;g;ex € e;QQex such that
(e:giex)(exge;) = e; and (exge;)(e;q;ex) = ex. For simplicity we set
0;—1 = €;q;€k.- Let Dij = Hie,-RejOj_l c D. Since for 1 _<_ i,j,l S k,
(e,-ReJ-)(ejRe,) C e,-Re,, 1t follows that DijDﬂ C Dil- A.]SO, for 1 S ] S
k, D;; is a local domain contained in D, for 1 < 4,7 < k with 7 # 7,
D;; 1s an additive subgroup of D and

Mnl(Dll) AInlxng(l)n) Mnlxnk(le)
Mngxnl(Dﬂ) Mng(Dn) Mngxnk(DZk)
Mnk_lxnl(Dk—ll) Mnk_lan(Dk—IZ) L Mnk-lxnk(Dk—lk)

Mnkxnl(Dkl) Mnkxnz(Dk2) Mnk(Dkk)

Now if for 1 < 2,7 < k, D;; = 0 then e;Re; = 0, 1.e., ;R is not
embeddable in e;R. Consequently, by Corollary 2.3, e;jRe; = €,Qe;.
Now for every q € Q, erqe; = 0j0;-'lekqek0,-0i_l. Since BflekqekO,- €
eeri = ejRei, it follows that exgex € Dﬁ. Thus Dji = D. MOI'OOVCI‘,
under the ordering described above for 1 <i < j <k, D;; # 0 and if
for some i > j, D;; = 0 and D;,; # 0 then for all I > 7 and m < 1,
Dy, =0 and hence D,,,; = D.

We will now show that if for some 1, 7, ¢ # 7, both D;; and Dj; are
nonzero then for every ¢ € D either ¢ € D;; or ¢! € Dj;. So, let both
D;; and Dj; be nonzero where 7 # j. To be definite, let ¢ > j. Let,
if possible, there exist ¢ € D such that neither ¢ € D;; nor ¢! € Dj;.

7 t—1
Lett; = > n,,t3= > n.+1, and let
r=1 r=1

U= {Za,—et]i + anietz,- la; €D, 1 S 1 < n} .
i=1 i=1

Then U is a minimal right ideal of Q (or equivalently, a uniform closed

right ideal of Q). It follows that U N R is a uniform closed right ideal

of R. We will show that U does not contain an idempotent in R. If

n mn
T =Y a;e,;+ Y .caiey; is an idempotent in U N R, then at least one of
=1 =1
ay, and ay, is nonzero, a;, € Djj, cay, € Djj, ay, € Dj;, cag, € Dj;. Since
z? =z, a} +aycay, = ay,. First assume that a,, # 0. If ay, is invertible
in Dj; then ca;, € D;; will yield ¢ € D;;D;; C D;j;, a contradiction.
Therefore, let a;, be not invertible in Dj;. Since a;, € D;; and Dj; 1s a
local domain, 1 — a,, is invertible in D;;. Since a] + ay,cay, = a,,, we
have a;, + as,c =1 (in D). Thus ¢! = (1 -~ a,)'ay, € D;j;D;; C Dj,
a contradiction. Now, let a;, = 0. Then, a;, # 0. Using once again
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x? = r we get ay,ca, = a,,. Consequently, a,c = cay, =1 (in D). But
then ¢! = at, € Dj;, once again a contradiction to the choice of c.
Similarly it can be proved that if for some ¢, n; > 1 then for each
¢ € D, either ¢ € Dy; or ¢! € D;;. In particular, D;; is a right and
left Ore (indeed valuation) domain with D as its right and left classical
quotient ring. The ting M, (Dy;) is a right CS-ring follows from ([1],

Lemma 3.6).

432

Let R, denote the block matrix ring (M, xn, (D;;))- Note that Q7 .. (£1) =

k
M, (D) where n = > n;. We will now show that Dy, is always a
=1

right Ore domain with D as its right maximal quotient ring. Since
Dy is nonsingular, it is sufficient to show that Dy C. D as right
Dyr-module. So, let £ € D and consider y = ze,, € M,(D). Since

n
Ry Ce M, (D), there exists z = ) _ a;je;; such that 0 # yz € Ry, 1.e,
ig=1

0 # S zapjen; € Ri. If zan, # 0 then we are done. So, let za,, = 0.
i=1

i1 i

Let jo be such that za,;, # 0. Let Y n, +1 < jo < ) n,. Since
r=1 r=1

D;; # 0, choose 0 # a € Dy and consider 0 # aej,, € H;. Since

n
S zanen; | a€jon = Tanj,0enn € Ry, it follows that 0 # za,ja €
i=1

[)kk- Observe that Qnjo@ < DkiDik C Dkk- Thus, l)kk is essential in D,
as desired. It can be similarly shown that for 1 < i < k, Dy C. D
as a right Dyx-module. Since D is injective as right Dyx-module it
follows that the injective hull of D;y as a right Dyi-module is D. This
completes the proof. §

Remark 3.3. In Theorem 3.1, the condition: for every c € D either
¢ € D;; orc! € D;; need not be satisfied when n; = 1. For example, the

ring R = ( ]1; E ) is right nonsingular right artinian right CS-ring.

Theorem 3.2. Suppose D 1s a division ring and ny,ns, ..., N are pos-
itive integers. Let

Mnl(Dll) Mnlxng(l)ﬂ) A/Inlxnk(l)lk)
A/[ngxnl (D2]) A/ITIQ (D'l‘l) b - A/Ingxnk (D2k)
R=
Mnk_lxnl (Dk—ll) A’[nk_l xng(Dk—IZ) Mnk,_, XN (Dk—lk)

Mnkxnl(Dkl) Mnkxng(Dkil) Alnk(Dkk)
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where for1 <i <k, D;; is a local domain containedin D, for1 <1,j <
k, i # j, D;; is an additive subgroup of D such that for 1 <1,3,1 <k,
D;;Dj C Dy. Assume that

(l)fOTlS’LS]Sk, Dij7é0,

(Zl) fOT’i > 7, ‘l,fD,] = ( then Dj,' = D,

(15i) for 1 < i < k, the injective hull of D;; as a right Dy-module s
D,

() if for some i, n; > 1 then for every ¢ € D either ¢ € Dy or
~1 € Dy, (or equivalently M, (Dy;) is a right CS-ring),

(v) for 1 < i,j <k, i# j, for every ¢ € D either ¢ € Dy; or
cle Dﬁ.

Then R is an indecomposable right nonsingular semiperfect right CS-
ring.

Proof. Clearly, R is an indecomposable right nonsingular semiperfect
ring. We will show that R is a right CS-ring. Since R has finite
uniform dimension, it is sufficient to show that every uniform closed
right ideal of R contains an idempotent ([4], Corollary 7.8). Clearly,

Q = Qh...(R) = M,(D), where n = Zn, Let U be a minimal (equiv-
alently, uniform closed) right ideal of Q Then

a;xry a1xs ... ATy,
asx [1 5% 5 ... QoI .

U= 1 T2 2r ljfor1<i<n,z; €D
anTy QpTy ... AnTy

for some fixed a; € D, (1 < i < n) not all of which are zero. We will
show that U contains an idempotent of R. To do this, we will produce
an element in U such that all columns but one are zero, the nonzero
column has 1 on the main diagonal, and all other entries on the nonzero
column belong to the appropriate D;;’ s. Clearly such an element lies
in R and is an idempotent element.

Let p be the largest integer such that a, # 0. For 1 <1 <k, let

N; = S’ nj, No = 0. Write p = N;_; + 7 where 1 < r < n; and
i
notice that both 7 and r are uniquely determined. If for every j such
that 1 < 3 <1, a,ap‘] € Dj; whenever [ = N;_; 4 l; for some /; with
1<l <njie,if for every l with 1 <1 < p, a,a;l belong to the
appropriate Dj;. Then taking x; =0 for ¢ # pand z, = a;l we get an
idempotent in U N R. Otherwise choose the largest integer p; such that
ap, ;" does not belong to the appropriate Dj;. Notice that py < p.
Let py = N;, +r where 1 < 1y < n,;, so that by our assumption
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~1 ¢ D;; Since py < p, % <i. If iy =1 then n; > 1 and hence

by condition (iii) of the hypothesis aya;! € Dy, = D

Ifh?é’l,

then by condition (iv) of the hypothesis a,
case, apa’

a;ll € Dj;,. Thus, in either
€ Dy,. By our choice of p; for py <1 < p,l = N;_1 + 11,

1 S ll S n;, a,a;l € Dji-; that iS, for p < l S D, a,a;l lie in the

appropriate Dj;. Since aja,, !

(aia;')(apa,,') and DjiDys, C Djs,, it

434

fOHOWS that for P < l S p, l = IVj_l +ll, 1 S l1 S n;, ’il _<_ ] S i,

" € Dj;,. Clearly, aza" € D;;, for l = p;. Now, if for every j
such that 1 < j < i, ajq, ' € Dj; whenever | = N;_; + [, for some
Iy with 1 < I; < n; thent.akmg:v,—Oforzyépla.nd:vp1 =a;ll we
get an idempotent in U N R. If not choose again the largest integer py
such that a,,a, ~1 does not belong to the appropriate Dj;, and continue
as above. After a finite number of steps, we get an element in U N R
as described above. Thus U N R contains an idempotent and hence is

a summand. This completes the proof.

Remark 3.4. The following diagrammatic representation should help
the reader to follow the scheme used in the proof of Theorem 3.2 to
create an idempotent in the ideal U N R.

-1 _ .
amam =1le¢ D!212

l
ap, @ ?1 ¢ thtl

/
p, @ m € an Op, Oy, p1 =1le Dtltl Qp, p1 ¢ Dut
/ T
a,,a;z1 € Dy, apa;}! € Dy, apa;' =1 € Dy
0 0
- 0 0 0 )
We start by choosing x; = 0 for i > p. Take x, = a, ' The upward

arrow indicates that we move upwards in that column until we hit the
first element which is not in the appropriate block (say this clement
ts i the py-th row). The diagonal arrow at this poini indicates we
move to the diagonally opposite entry (in the py-th column). At this
stage, we repeat the process by choosing x; = 0 for i > py and T, =
a‘ll. Observe that the first element in this column which is not in the
appropriate block is always in a row strictly above the pi-th row. The
process continues until we obtain the desired column all of whose entries
are in the appropriate blocks. At this point we make the remaining
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columns on the left (if any) zero by choosing the corresponding x;’ s as
2€r08. :

Lemma 3.3. Under the hypothesis of Theorem 3.2, R is prime right
Goldie if and only if each D;; # 0.

Proof. First assume that D;; # 0 for all i and j with 1 < 4,5 < k.
We will prove that R is prime right Goldie. It is enough to show
that R is semiprime. To see this, let N be a nilpotent ideal of R.
Let f; be the idempotent in R such that f;Rf; = M,(Di). Then
f:N f; is a nilpotent ideal of the prime ring M, (D;;) and so f;N f; = 0.
Thus, N has zero blocks on the diagonal. In case some (i, j) entry of
N is nonzero then a suitable multiplication of a nonzero clement in
R with N will produce an element in N with nonzero entry on the
diagonal, a contradiction. Thus N = 0. It follows that R is sermiprime
right Goldie and hence prime right Goldie because Q,,;(R) is simple
artinian. Tndeed, QU(R) — Qe (R).

To prove the converse, assume that D;; = 0 for some 7 > j. Then
Dy = 0 for all I > i and m < j, in particular D;; = 0. Choose the
smallest positive integer l; such that Dy;; = 0. Then D11, Da1,y ey Diy—11
are all nonzero. On the other hand, for all j with 1 < 7 <[ —1,
Dllijl C Dlll = (. It follows that Dllj = Oforalljwﬂ;h 1<3< l,—1.
Also then forall [ >, and 1< j<l; —1, D;j=0and Dy = D. Let

M‘nl (Dll) Mﬂ.l Xﬂz(D12) see Mn1 Xy, 1 (Dl,ll—l)
Sll - Mn2><ﬂ1 (D21) M‘nz (D22) anxnki (D2,ll—1)

Mnll-lx“l(Dll_ll) Mﬂtl—1><ﬂ2(Dll—12) Mnll—l(Dll—lyll—l)

l1-1 k
u; = Y. n; and v; = Y n;. Then R becomes

i=1 i=l

Sll Mulxvl (D)
0 Rl .

Consequently, R is not prime. This completes our proof. &

Theorem 3.4. For a ring R, the following are equivalent:

(i) R is an indecomposable right nonsingular semiperfect right CS-
Ting.

(i) R is isomorphic to the block matriz ring (Mn,xn;(Di;)) as in
Theorem 3.2.
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(iii) R is isomorphic to
Su Sz . Su-1 Su

0 S»u ... Sua Sat
0 0 ... Si1g-1 Sy
0o 0 .. 0 Su

where for each i, Sy is a prime right nonsingular semiperfect right CS-
ring as in Lemma 3.8 and for i < j, Si; consists of rectangular matrices
over D of the appropriate size. '

Proof. The implication (i) = (i) is Theorem 3.1, and (i) = (i) is
Theorem 3.2. In light of Lemma 3.3 , it is clear that (i4) = (i¢). To
prove (ii) = (iii), start out proceeding as in the proof of Lemma 3.3
to obtain the representation of R as

Sll Mulxvl (D)
0 Rl | .

Continue on recursively on R to obtain the desired representation. &

Remark 3.5. Using the structure theorem above, it follows that the
classical ring of right quotients QT,(R) of a semiperfect right nonsingu-
lar right CS-ring R is of the form

My (D) Myxi,(D) ... My, (D) My (D)

0 M,(D) . Myxi.(D) My (D)
0 0 v My (D) M, _ (D)
0 o .. 0 M, (D)

and is, therefore, semiprimary. It follows, then, a posteriori, that the
structure theorem ([2], Theorem 6.10) applies in this case. However,
it does not seem possible to prove that Q7,(R) is semiprimary without
using the structure of R in Theorem 3.4. In addtion, Theorem 3.4 also
gives an intrinsic description of the diagonal blocks in the represen-
tation of R whereas these could be characterized only upto orders in
simple artinian rings in ([2], Theorem 6.10).

Following the notation in [1], we will refer to the following condition
as condition (*):

If ;R % e;R, and if both e;Re; and ejRe; are nonzero then there

ezists ¢ : €;Q — e;Q such that c(e;R) € e;R and ¢”'(e;R) ¢ e;R.

Lemma 3.5. Suppose R is an indecomposable right nonsingular semi-
perfect right CS-ring. Then R satisfies condition () if and only if for
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1<i,j < n with ;R % e;R either e;Re; = 0, e;Re; # 0 or e;Re; # 0,
6_1'R6i = 0. .

Proof. First assume R satisfies the condition (). Let e;R 2% e;R.
Then, either e;Re; = 0 or e;Re; = 0 ([1], Lemma 3.4). By Corollary
2.4, either e;Re; # 0 or e;Re; # 0. Thus erther e;Re; =0, ejRe; # 0

or e;Re; # 0, e;Re; = 0. The converse is vacuously true. I

Suppose R is an indecomposable right nonsingular semiperfect right
CS-ring satisfying the condition (x). Then, by Lemma 3.5, for 1 <
i,j S n with 6.,'R Sé CjR either e,-Rej = 0, CJ'RC,' 7é 0 or e,-Re,— 7é O,
e;Re; = 0. With the notations introduced in the proof of the Theorem
3.1, for 1 < i,j < n with ¢ # j either D;; = 0,Dj;; # 0 or Dy #
0,Dj; = 0. Under the ordering described above D;; = 0 for ¢ > j.
Thus, D;; = D for i < j. We thus have the following:

Corollary 3.6. ([1], Theorem 3.9) Suppose R is an indecomposable
right nonsingular semiperfect ring satisfying the condition (). Then
R is a right CS-ring if and only if there exists a division ring D and
positive integers Ny, Na, ..., Ny such that

Mnl(Dl) Mn1Xn2(D) Mﬂ1><ﬂk-1(D) Mank(D)

0 Mn2 (D2) aee M‘"-2><ﬂk—-1 (D) anxnk(D)
0 0 M‘"k—l (Dk—l) Mnk—lxnk(D)
0 0 0 M, (Dx)

where for each i, D; is a local domain contained in D, Q(Dg) = D.
Furthermore, if for any i, n; > 1, then (i) D; is the right and left
Ore domain with classical quotient ring D, (ii) for each c € D, either
¢ € D; or ¢! € D; and (iii) My, (D;) is a right CS-ring.

Corollary 3.7. ([2], Theorem 3.1) Suppose R is an indecomposable
right nonsingular semiprimary ring. Then R is a right CS-ring if and
only if there exists a division ring D and positive integers ny, Ny, ..., Nk
such that

Mnl(Dl) Mﬂlxnz(D) MmXﬂk—l(D) Mnlxnk(D)

R 0 Mﬂa(D2) Mﬂ2><nk-1(D) anxflk(D)
0 0 Mﬂk—l (Dk—l) Mnk-lxme(D)
0 0 0 M, (Dx)

where for eachi, 1 < i < k, D; is a division subring of D. Furthermore,
if for somei, n; >1 ori=k then D; = D.
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Proof. First assume that R is a right CS-ring. Since J(R), the Jacobson
radical of R is nilpotent, for each i, 1 < i <k, e;Re; is a division ring.
Thus, with the notations of Theorem 3.1, each Dy; is a division ring.
Also then, for 1 < 4,5 < k, i # j, e;Re; = 0 or ejRe; = 0. Thus
with the ordering of ¢;R’ s as in Theorem 3.1, D;; = 0 for 7 > j and
D;; = D for i < j. Writimg D; = D;; for 1 <1 < k, we have the
result. The last statement follows from the fact that D;; is a division
ring and the condition (ii) in Theorem 3.1. The converse follows from
Theorem 3.2. §

We conclude by pointing out that right nonsingular semiperfectright
CS-rings which do not satisfy the condition () are rather abundant.
Indeed any prime semiperfect right CS-ring which is not a full matrix
ring over a valuation domain does not satisfy (*). These rings are
characterized in Lemma 3.3 above. A specific instance would be, for

example,
(Z(p) PZ@))
L) L)

where Zy) is the localization of Z at p.

The authors would like to thank the referee for his helpful suggestions

and comments.
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