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ABSTRACT

Nonnegative mth roots of nonnegative O-symmetric idempotent matrices have
been characterized. As an application, a characterization of nonnegative matrices A
whose Moore-Penrose generalized inverse A' is some power of A is obtained, thus
yielding some well-known theorems.

1. INTRODUCTION

Let A be an m X n real matrix. Consider the Penrose [8] equations

AXA=A, )
XAX=X, (2)
(AX)T= AKX, (3)
(XA)"=xa, (4)

where X is an nXm real matrix and T denotes the transpose. Consider also
the equations

AXA=AK (1%)
AX=XA, (5)
where k is some positive integer.
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For a rectangular matrix A and for a nonempty subset A of {1,2,3,4}, X
is called a A-inverse of A if X satisfies Eq. (i) for each i €X. In particular, the
{1,2,3,4}-inverse of A is the unique Moore-Penrose generalized inverse. The
unique solution X of (2), (1*), and (5) is a square matrix called the Drazin
inverse of A, where k is the smallest positive integer such that rankA*=
rankA**+ 1,

A matrix A=(a,) is called O-symmetric if a;=0 implies a;=0. Thus
every symmetric matrix and every positive matrix is O-symmetric. If a matrix
A is a direct sum of matrices A,, then A, will be called summands of a.

The problem of finding the mth roots of any matrix A is an important
classical problem (see Gantmacher [4], Chapter 8). In this paper our aim is to
study the nonnegative mth roots of nonnegative O-symmetric idempotent
matrices. Theorem 1 of this paper reduces the study of the nonnegative mth
roots of any nonnegative O-symmetric idempotent matrix to the nonnegative
kth roots of matrices of the form xy (x, y positive vectors with yTx=1), and
to the nonnegative solution of a system of simultaneous equations of the type
XXy Xy=xyyl,..., X, X,..X;_1=xy7 (x, y, positive vectors with y'x,
=1). Clearly, xy T is the only nonnegative kth root of rank 1 of the positive
idempotent matrix xy 7. However, the nonnegative kth roots of ranks greater
than 1 are not considered, and it remains open to determine such roots. In
Sec. 4, we use the reduction obtained in Theorem 1 to characterize the
nonnegative matrices A such that A* is O-symmetric and A**!=A for some
positive integer k. This, in particular, determines all nonnegative matrices A
whose generalized inverse A is some power of A. This result generalizes the
recent results of Harary and Minc [5] for nonnegative matrices A with
A~'=A and that of Berman (1] for nonnegative matrices A with A'=A.

1.1. Notation and Conventions

Sa: the group of permutations on {1,2,...,n}.

At Moore-Penrose generalized inverse.

AP Drazin inverse.

Az0: a matrix with nonnegative entries.

A>0: a matrix with positive entries.

@: a set of nonnegative matrices.

Ve . {(X|Xme@).

+V&@: (X>0)Xx"e@).

C,ff,): the (p,q)th block of the ith power of a partitioned matrix C.

The diagonal of any square matrix shall mean the main diagonal. By a vector
we shall mean a column vector.
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NONNEGATIVE mTH ROOTS 39

2. MAIN RESULTS

THeoreM 1. Let % be the set of all nonnegative 0-symmetric idempo-
m .
fent matrices. Then A€ + V% if and only if there exists a permutation

matrix P such that PAPT is a direct sum of square matrices of the following
inot necessarily all) three types:

. () Gy, where Cli=xy", for some positive vectors x and y such that
yix=1

n
0 C, 0 0 0 )
0 0 Cy O 0
O 0 0 * ° * 0 Cd—ld
Ch O 0O - - - 0 0
vhere (C15Co5...Cy))™=x, yI,..., (CiiCig... Cy_ )™t =xyJ; x, y, are

ositive vectors of the same order with y'x,=1; x, and x, i7j, are not

L3

wecessarily of the same order; d|m, d+1; and the zeros on the diagonal are
quare matrices of appropriate orders.

(I11)
rO C12 ClS Cll 1
0 0 Cy Ca
0 0 . 0 G_y
0 o0 - 0 o0 |

vhere I <m, the C;’s are nonnegative matrices of appropriate orders, and the
eros on the diagonal are square matrices.

THEOREM 2. Let ’@} be the set of all nonnegative symmetric idempotent
natrices. Then A€ + VB if and only if there exists a permutation matrix

" such that PAPT is a direct sum of square matrices of the following (not
ecessarily all) three types:

(1) €y, where Cli=xx" and x is a positive unit vector.
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(1)
(0 ¢, 0 © 0 |
0 0 Cy 0 0
0 0 0 - - - 0 Ci,4
C,, 0 0 - - - 0 0
where (C1gCay...Co)™ 4 =x,x],..., (C41Ciz...Cy_1)™ ¢ =x,x]; the x's are

positive unit vectors (not necessarily of the same order); d|m, d#1; and the

zeros on the diagonal stand for the square matrices of appropriate orders.
(I11)

0 Cie C13 . . : Cu

0 0 C23 * * * CZ[

0 0 . - - 0 Gy
o o - - - 0 0 |

where 1 < m, the ;s are nonnegative matrices of appropriate orders, and the
zeros on the diagonal stand for the square matrices.

3. PRELIMINARY RESULTS AND PROOFS OF THEOREMS 1 AND 2

In order to prove Theorems 1 and 2 we shall prove a few lemmas. We
first recall that if A, B are nonnegative matrices of orders mXn, nXxk,
respectively, such that AB=0, then for any i, 1< i <n, the ith column of A
and the ith row of B cannot both be nonzero. We now prove

Lemma 1. Let A, C be nonnegative (not necessarily square) matrices
such that AC=0, and XA+ CY >0 for some matrices X and Y (not
necessarily nonnegative). Then A =0 or C=0.

Proof. Assume A0, C#0. Then AC=0 implies that there exists a zero -

column of A (hence of XA) and a zero row of C (hence of CY). But then
XA + CY cannot be positive, a contradiction. |
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NONNEGATIVE mTH ROOTS 41

Lemya 2. Let A, C,,...,C, be nonnegative matrices such that AC,=0
(GA=0),i=1,...,n, and XA+37.,CY,>0 (AX+3"_,Y,C,>0) for some

1
nonnegative matrices X,Y;, 1<i<n. Then A=0 or all Cs are zero.

Proof.  Observe A(Z7_,C)=0 and XA +(Z"_,C)(Z".,Y,)>0, and ap-
ply Lemma 1. [ ]

Lemma 3. Let A, B, C, and D be nonnegative matrices of orders m X n,
nXm, nXm, and m X n, respectively, such that AC=0= DB and each entry
on the diagonal of BA + CD is nonzero. Then the jth column of A is zero if
and only if the jth row of B is zero.

If in addition, AB=0, then A=0=B.

Proof. If A, B, C, or D is zero, then the proof is trivial. So assume each
of the matrices A, B, C, and D is not zero. Let the jth column of A be zero.
Then the jth column of BA is zero. Since the diagonal of BA+ CD is
nonzero, this implies that the jth column of CD cannot be zero. Hence the
jth column of D cannot be zero. But then DB =0 implies that the jth row of
B is zero. The converse can be proved similarly.

The last statement follows trivially. |

LEMMA 4. Let (Ig 8) be a nonnegative matrix such that the diagonal

blocks are square matrices and each entry on the diagonal of D is nonzero.
Then

Proof. Let

c, C "
c="n “eje, (D 0).
(c21 czz) 0 0
Then

ccmt=cm-ic=(D )
0 0
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implies

CLCiP Y+ CLCir V=D,  Cir PCL=CirVC, =G~ 1C, =0,
and

Cip=VC, +ClpCyy=D,  C,CiE~V=CyCli V=G, Cly "V =0.

Thus, by Lemma 3, C,;=0= C,,. Then C{}=D and Cz=0. Hence

( Cu Clz) c ( +VD 0 )
Co Cy 0 +Vo /)
completing the proof. |
LEmma 5. Let
Cll Cln

where C; is a nonnegative matrix of order I, X1, and A, is a positive square
matrix of order [, 1 <i<n. Then there exists a 0 €S, such that

(@) Cu;y*0, Cy =0 Vk=o(j), ]— ,1

®) CoiyCotportny” - Commvyi = [Equzvalently, if d, is the smallest posi-
tive mteger such that adv( =1, then (Cotp G “'(1)1)"'/4—1&7.

(c) o™=1, the 1dent1ty permutation. '

(d) There exists a permutation matrix P such that PCP" is a direct sum of
square matrices of the types (I) or (II) described in Theorem 1.

Proof.  Since

cm " ,
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NONNEGATIVE mTH ROOTS 43
we get
CIUC,=0=C,C{" ™V forall i%j (6)
and
A=CClr Y+ - +CCm V4 +C,Cim N, (7)

Assume C;G™ V0. Then C/™~ V0, and thus by (6), (7), and Lemma 2,
G =0 Yk+1. Note that C;#0 and A;= C,C{™~". Hence each row of C has
one and only one nonzero block. Since the matrix C™ has no zero column,
the same is true for the matrix C. Therefore, there is one and only one
nonzero block in each row and in each column of C. This determines a
permutation o € S, such that

Cotp 70, Ce=0 Vk=o(j), j=1,....n. (8)
Then from (7) and (8), A =0C,C - C, .. But then Cp, #*
0, CPIPZ#O’.."CPm—lf#O imply p, = o(j), P2=°2(ii---r Pm—lzom_l(i)r and
j=0"(j). Hence ™= I, the identity permutation, proving (b) and (c).

Since any permutation o can be expressed as a product of disjoint cycles,
(d) follows by straightforward computations. n

LemMa 6. Let 0#C € + %, where 0 is a square matrix of order n.
Then there exists a permutation matrix P such that

( 0 C12 C13 T : Cu ‘
0 0 C23 N * * C2l
PCPT=|. S
0 0 - M ¢ 0 Cl—ll
o o - - . 0 o0 |

where I <m, the 0's on the diagonal stand for square matrices, and the C’s
are nonnegative matrices of appropriate orders.

Proof. 1f C=0 then the proof is trivial. So assume C0. Then m > 1.
We shall prove this result by induction on m. So suppose m=2. Then C2=0
implies that there exists a 6 €S, and 1< r<n such that a()th,...,o(r)th
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44 S. K. JAIN, V. K. GOEL, AND EDWARD K. KWAK
rows and o(r+ 1)th,...,o(n)th columns of C are zero. This gives a permuta-
tion matrix P such that PCPT is of the required form. We now assume that
the result is true for m=k—1 and prove the result for m = k. Since Cck=0

we have (C*~1)2=0. By induction there exists a permutation matrix P, such

that

(3 3)

Without loss of generality, we can assume that each row of the matrix block
D is nonzero. Let

P,CP{=(‘; PF3)

Then P,C*P =0 gives

(5 6 o)=0

This implies AD=0= BD. But since no row of D is zero, we get A=0=B.
Thus :

P,CP{=(8 ?)

Then

0 E\'_ Tk—1=(0 D)
(0 F) (PiCPY) 0 0

implies F*~*=0. Again by the induction assumption, there exists a permuta-
tion matrix P, such that

0 Fy Fg - - - qu
0 0 Fp - - - qu
P,FP[={- . |, g<k—-Ll
0 0 0 Fq_lq
L0 0 0 0
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NONNEGATIVE mTH ROOTS 45

Then

is a desired permutation matrix. |

Proof of Theorem 1.

“Only if”’ part.

Let A€ V® . Then there exists a matrix B €% such that A™ = B. Since
B is a 0-symmetric idempotent matrix, there exists, by Flor [3], a permuta-
tion matrix P such that

where A, =xy, x,y, are positive vectors with yTx, =1, and s is the rank of
B. The proof now follows by Lemmas 4, 5, and 6.
The converse is clear. [ ]

Proof of Theorem 2.
In the proof of Theorem 1, we observe that if B is symmetric, then
A, =xxT, where x, is a positive vector with x'x,=1. This completes the

proof. B

4. APPLICATIONS OF MAIN RESULTS

In this section we use our main results to obtain characterizations of
nonnegative matrices A such that A* is O-symmetric and A**!= A for some
positive integer k. This gives, in particular, characterization of matrices A
whose generalized inverses are some power of A (cf. [1], [5)).

THEOREM 3. Let A be a nonnegative matrix. Then A™ is 0-symmetric
and A™*'= A if and only if there exists a permutation matrix P such that
PAPT is a direct sum of matrices of the Jollowing (not necessarily all) three
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types:
(i) xyT, where x and y are positive vectors with y'x=1.

(i)

0 WipX; Yg 0 0

0 0 Wo X, yf 0

0 0 0 o 0wy g yg
Kwdlxdylr 0 0 - - -0 0 )

where x,y; are positive vectors of the same order with y'x,=1; x; and x,
i |, are not necessarily of the same order; d|m; and w,,, ..., w,, are positive
numbers with ww,,- - wy, = L.

(iif) A zero matrix.

Proof. “Only if” part: Clearly A™ is idempotent. Hence by Theorem 1,
there exists a permuation matrix P such that PAPT is a direct sum of the
square matrices of the types (I), (II), or (IIT). Since A™*!= A, each summand
S of PAPT satisfies S™*'=S. If S is of type (I), then S=C,;, where CJ3 = xy 7
for some positive vectors x and y such that y "x=1. Since xy T is idempotent
of rank 1, there exists an invertible matrix U such that

wr-ol} 3o

where zero block on the diagonal stands for a square matrix. It follows then
that the first column of U is x, and the first row of U~! is y”. From
Gantmacher [4, p. 235] we have

VayT = U(\/T D )U—l.
0

Vo

Further, if R™*!'=R for some R € +1 xyT , then

Re U(VI O)U-l.
0 0
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NONNEGATIVE mTH ROOTS 47

Since S € + 'y xyT , we obtain

S=U((1) 8)U—l=xyT.

If S is of type (II), then

0 C, 0 0 0
0 0 Cy 0 0
5= L L
0 0 0 - - - 0 G,
Ci © 0 - - - 0 0 |

where (C,Co5- -+ )™ 4=x,y[,..., (C;yCpp- - - Ca-1a)™?=2xy], % and y,
are positive vectors with y,’x;=1, d|m, and the zeros on the diagonal stand
for the square matrices of appropriate orders. Therefore,

xyf 0 0

0 0 0yt

Since 5™ is an idempotent matrix of rank d, there exists an invertible matrix
U such that

(ke o
0 0

This implies that the first d columns of U are

U, 32 0

'O 3 O L 3’ E
: 0
: u

0 0 d
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and the first d rows of U ' are (vf 0 -+- 0),..., (0 --- 0 v]) in this
order, and I, is the d X d identity matrix. Let

X1 Y
Xo Yio

u=1. and uv,=1|. |, 1<i<d
Xt Yu

From Gantmacher [4, p. 235]
sey| Ve O ‘U“.
0 Vo
Since S™*!'=S, we get
se U( Vi, 0 ) U-L
0 0

Thus

_ w 0 -1
s=u(y o)

where W™= 1,. Also

0 C, 0 0 0
0 0 Cyu 0 0
s=: .
0 0 0 - - - 0 Cpyy
Ch 0 0 - - - 0 0

So if W=(w,), then simple computations give all w,; =0 except
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1 Wags s Wy 14, Wy, and wiptes - - - wy; = 1. Hence

SzLy(W O)U—l

0 o0
WX Yy 0 0
0 0 Wyxeyl 0 - - 0
0 0 0 o 0wy gy
wyxgy 0 0 - - -0 0

ially, suppose S is of type (ILI). Then S™*'=S gives S=0, completing the
“0of.
The converse is clear. [ |

Tueorem 4. Let A be a nonnegative matrix. Then At=A™""! for some
ssitive integer m if and only if there exists a permutation matrix P such
wat PAPT is a direct sum of matrices of the following (not necessarily all)
iree types:

(i) xxT, where x is a positive unit vector.

(i)

0 WX, X7 0 o - - - 0

0 0 Woyxpxy O - - - 0

0 0 0 * * * 0 wd_ de__ lIdT
{ wdlxdxlr 0 0 . ‘ . 0 0 J

here x; are positive unit vectors; x, and x, 17, are not necessarily of the
me order; d|m; and w,, ..., w,, are positive numbers with Wiy ” * * Wy,
1.

(ili) A zero matrix.

Proof.  Follows from Theorems 2 and 3. [ ]
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5. REMARKS

(1) As special cases of Theorem 4 we can obtain theorems of Harary and
Minc [5] and Berman [1], characterizing nonnegative matrices A such that
A~'=A and A" =A4 respectively.

(2) We can also derive the nonnegative solutions of the matrix equation
X™=1, where m is a positive integer, from Theorem 4. The solutions are
square matrices A such that for some permutation matrix P, PAPT is a direct
sum of matrices A;, where A, is an identity matrix or a matrix of the form

(o a, 0 0 - - - 0]
0 0 a O - - - 0
O 0 O - N * O ad_l
G 0 0 - - - 0 0]

where a0, -+ a;_1a;,=1, ¢,>0, 1<i < d, and d|m.

The referee has informed us that M. Lewin [7] has also characterized the
nonnegative solutions of X™=1.

(3) A special case of Theorem 3 answers a question of Berman [1] for
characterizing the nonnegative matrices which are equal to a (1, 2)-inverse of
themselves (equivalently A = A P) under the hypothesis that A? is 0-symmet-
ric. We note from Theorem 3 that if A®=A4, (ie, A is equal to a (1,2)-
inverse), then A is O-symmetric if and only if A is O-symmetric.

(4) In another paper [6] we have characterized nonnegative matrices A
whose Moore-Penrose generalized inverse A" is nonnegative and is equal to
some polynomial in A with scalar coefficients. This result generalizes Theo-
rem 4 of this paper.

REFERENCES

1 A. Berman, Nonnegative matrices which are equal to their generalized inverse,
Linear Algebra and Appl. 9 (1974), 261-265.

2 M. P. Drazin, Pseudo inverses in associative rings and semigroups, Amer. Math.
Monthly 65 (1958), 506 -514.

3 P. Flor, On groups of nonnegative matrices, Compositio Math. 21 (1969), 376 -
382.

4 F. R. Gantmacher, Matrix Theory, Vol. 1, Chelsea, New York, 1959,

468



469

NONNEGATIVE mTH ROOTS 51

5 F. Harary and H. Minc, Which nonnegative matrices are self inverse, Math. Mag.
49 (1976), 91-92.

6 S. K. Jain, V. K. Goel, and Edward K. Kwak, Nonnegative matrices having same

nonnegative Moore-Penrose and Drazin inverses, submitted for publication.

M. Lewin, Nonnegative matrices generating a finite cyclic group, Linear and

Multilinear Algebra, 5 (1977), 91-94.

8 R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51
(1953), 406 -413.

Received 11 July 1977; revised 9 November 1977



