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NONNEGATIVE MATRICES A SUCH THAT Ax =5 HAS
NONNEGATIVE BEST APPROXIMATE SOLUTION*

YOSHIMI EGAWA*t AND S. K. JAIN?

Abstract. In this paper the question of existence of nonnegative best approximate solutions (b.a.s.)
of the linear system Ax = b is investigated. Firstly, a necessary condition that Ax = b have a nonnegative
b.a.s. for all b 20 with respect to a positive definite symmetric bilinear form § whose associated matrix is
nonnegative is obtained. It follows as a consequence that Ax = b also has a nonnegative least squares
solution (l.s.s.). Among other results it is proved that if B is a nonnegative idempotent matrix such that
AB = BA, rank (AB) =rank A, then Ax =) has a nonnegative Ls.s. for all b€ R(B), 620, if and only if
for certain well-defined matrix A, (called the coefficient matrix of A with respect to B) and certain
symmetric bilinear form S, Aox = b has a nonnegative b.a.s. with respect to S. These results generalize the
well-known results concerning the question of the existence of 2 nonnegative l.s.s. for the system Ax = b.
Indeed, these investigations initiate a new approach to the question beyond the technique of inverse-
positivity. The importance of this question lies in its varied applications to problems in mathematical
economics, in probability theory, in operations research and in numerical algebra.

1. Notation and definitions.

R™: the vector space of m x 1 matrices over the reals R.
IIx]lz: the usual Euclidean norm of a vector x.

(X)) the ith column of a matrix X.

(X);: the ith row of a matrix X.

(x);: the ith entry of a vector x. .

Xij: the (i, /)th entry of a matrix X ; thus, (X)), = X,,.
X" the transpose of a matrix X,

R(B): the range of an m X n matrix B, i.e., {y e R™|y = Bx,
for some x e R"}.
R(B)*'s: the subspace of R™ consisting of vectors x such that
S(x, b)=0 for all b€ R(B), where § is a positive
definite symmetric bilinear form.
R(B)": the subspace R(B)*s when S is the usual inner product on R™.
(Y): the subspace spanned by the subset Y of R™.

€ the vector in R™ having all entries zero except the ith entry, which is 1.

Op: the zero vector in R™.

Let S(-, ) be a positive definite symmetric bilinear form over R™. Then the
associated symmetric matrix with respect to the standard basis (e}, es, . . ., e,,), shall

also be denoted by §, i.e., S(x, y) =x'Sy, x, ye R™.

Let A be an m X n matrix and let b € R™. Then xo € R" is called a best approximate
solution of the system Ax =5 with respect to (w.r.t.) S if S(Axo—5, Axo—b) is
minimum. If S is the usual Euclidean norm, then the best approximate solution with
respect to S is commonly known as the least squares solution.

If A, X are respectively m X n, n X m matrices such that AXA = A and (AX)' =
AX, then X is called a {1, 3}-inverse of A and is denoted by A",

For simplicity, we shall not indicate the order of matrices if it is clear from the
context. Further, all matrices are real.
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198 YOSHIMI EGAWA AND S. K. JAIN 529

2. Introduction. This paper addresses the question of characterizing nonnegative
matrices A such that the linear system Ax = b, for certain nonnegative vectors b, has
a nonnegative best approximate solution. The importance of this question can hardly
be overemphasized in view of the fact that in many of the applications of nonnegative
matrices one is involved in finding nonnegative solutions or least squares solutions of
the system Ax = b, where A =0, b 0. For example, one finds numerous applications
in areas such as mathematical economics, probability theory, numerical algebra and
linear programming.

Since the nonnegativity of certain generalized inverses of A is related to the
existence of nonnegative least squares solution of the system Ax = b, many authors
have previously considered this question from this viewpoint. For example, the
existence of a nonnegative {1, 3}-inverse of A is equivalent to the existence of a
nonnegative least squares solution of Ax =5 for all nonnegative vectors b. The
characterization of nonnegative matrices A having a certain nonnegative generalized
inverse has been extensively studied in the literature (see [1]-{3], [6}-[11]).

We begin by considering the nonnegative best approximate solutions of Ax =5
with respect to an arbitrary positive definite symmetric bilinear form S whose associ-
ated matrix is nonnegative, and show in Theorem 3.7 that A" =0—a well-known
result for the Euclidean norm. We then proceed to the main question addressed in
this paper, that of characterizing nonnegative matrices A such that Ax =5 has a
nonnegative least squares solution for all nonnegative vectors b in a given set. We
study this question in the case when b € R(B), where B is a nonnegative idempotent
matrix such that AB = BA, rank (AB) =rank A (Theorem 4.4). This is done by first
obtaining the characterization of nonnegative matrices A which commute with a given
nonnegative idempotent matrix B such that rank (AB)=rank A (Lemma 4.2). We
then introduce an intrinsic matrix A, (coefficient matrix) of A. The problem of the
nonnegative least squares solution of Ax =5, b€ R(B), b =0, is then reduced to the
problem of obtaining a nonnegative best approximate solution of Agx = b, for all
nonnegative vectors b, with respect to some suitably defined norm S (Theorem 4.3).
The proof of Theorem 4.4 is then completed by applying Theorem 3.7 and Theorem
4.3. An example is given to show that the converse of Theorem 4.4 does not, in
general, hold.

We emphasize that Theorem 4.4 is an initial attempt to study the question stated
in the beginning of the introduction. That this theorem is also true under a certain
weaker hypothesis is explained in Remark 3 at the end of the paper. However, it is
desirable that the hypothesis in Theorem 4.4 be further weakened. This remains open.

We remark that Lemmas 3.1, 3.6 and 4.2 are also of independent interest.

3. Nonnegative best approximate solutions.

LEMMA 3.1. Let A be a nonnegative m X n matrix of rank r. Suppose Ax = b has
a nonnegative solution for every b = 0, which makes this equation consistent. Then there
exist permutation matrices P, Q such that

(PAQ);; #0, 1=i=sr,
(PAQ),, =0, 1=i<j=r

Proof. We proceed by induction on r. Let 2 denote the set of ordered pairs (P, Q)
of permutation matrices such that (PAQ)', 1 =j=r, are linearly independent, and
(PAQ);., # 0. For each (P, Q) € 2, we define q(P, Q) as follows:

q(P,Q)=card {jl1=j=r, (PAQ),,; #0}.
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Let
p =min {q(P, Q)|(P, Q)e 2}.
We want to prove p = 1. Suppose p = 2. Let
F={(P,Q)e2|q(P,Q)=p, (PAQ),,#0}.
Let
a =min {(PAQ)1./(PAQ),.|(P, Q) #}.
Suppose (P, Q) is an element of & which gives this minimum value a. Set F = PAQ.
Let
L={jll=j=rF;=0},
K={il1sism,aF;>F,, F,=0VjeL}.
Suppose K # & and i€ K. Then, if we replace the first row by the ith row, this
contradicts the minimality of a unless F;; = 0 for some j& L, 1 =j =r. In the latter case,

we get a contradiction to the minimality of p. Therefore K = J. This implies there
exist nonnegative numbers 8;’s, j € L such that

b=(F) —a(F)+ T B,{(F)z0.

jel
By our assumption the system Fx = b has a nonnegative solution. Thus there exist
v;20,1=j=n,suchthat b=y ., v;(F). By the replacement theorem, we can choose
k with vy, # 0 such that

(FYNsjsn=(F)" (F)Y|1sjsrj=2).

Since (b); =0 and vy, # 0, we have F, , =0. Hence, if we replace the second column
by the kth column, we get a contradiction to the minimality of p. Thus p=1. By
interchanging rows and columns suitably, we may assume that there exists / = r such
that

A, =0, 2s/sl, A, #0, jzl+landj=1,

and the submatrix A’ of A which consists of the columns 2 through / of A is of rank
r—1. One can check that A’ satisfies the hypothesis of the lemma. Consider the
submatrix Ag consisting of all but the first row of A'. Since the first row of A’ is a
zero vector, we may assume by applying induction to Ag that

A,‘_l'=0, 2§l<j§r, A,;,'#O, 2.§l.$_r-

Since A;;=0,2=j=r,and A, #0, the proof is complete.
In our next lemma, we shall need the following notation. Let u € R™. We define

Zw)={illsi=m, (u);#0},
Ziw)={ieZw)|1si=sr).

LEMMA 3.2. Let A be an m X n nonnegative matrix of rank r. Suppose that for
every integer I,, 1=1,=n, and for every subset L of {1,2, -+, n} with Z,((A)") <
Z\3 e (A)) we have the inclusion Z((A)")EZ(Z,GL(A)I). (If L is empty, then by
YieL (A) we understand the zero vector.) Also suppose that Ax = b has a nonnegative
solution for every b 2 0 which makes this equation consistent. Then there exist permutation



200 YOSHIMI EGAWA AND S. K. JAIN

matrices P, Q such that

where P, is a permutation matrix of order r and
(quc?)u # 0‘ l ;Ei;gf,
(PAQ);; =0, l=sisr 1Zj=7,

531

Proof. Let P', Q' be permutation matrices which satisfy the conclusion of Lemma

3.1. Now, since (P’AQ";; #0 and (P’AQ’),, =0 for j <!/ =r, we have

7 T (PAQY)2Z(PAQY), 15

[=j+1

Therefore,

[=j+]

But then by assumption
z( £ (4Q))2Z\4QY)
{=j+1
and so by choosing j=r, r—1,..., 1, we obtain

r

1= card (Z,(A0") #card (Z,( T (4Q"))

I=r=1

#.--#card (Zx(lg (AQ')’>) =

Hence there exists a permutation matrix P satisfying the following property:

(%) (PAQY, %0, 1=i=r (PAQ');; =0,
where
_[P 0].
P‘[o I

P, is a permutation matrix of order r. With the matrix P as obtained above, let

@R ={Q, a permutation matrix|PAQ has the property (*)}.

5 (AO')‘) 2Z((AQ)), 1=/

1si<jsr,

By way of contradiction, suppose Lemma 3.2 is false. For each Q € 3, let A{Q) be

the positive integer defined as follows:

A(Q)=max {i|]2=i=rsuchthat3j,1=j=i-1, with (PAQ),, #0}.

Let

q =min {A(Q)|Q € B}, €={QecB|A(Q)=q)}).

Let

i (PAQ)q,
a=min| X (PAQ),

Oe%}
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Now let Q be an element of € which gives the minimum value a. Set F = PAQ. We
know there exists jo, 1 =jo =g — 1, such that F, , # 0. By the maximality of A (Q),
F.,=0, i#q, 1si=r

Therefore Z,((F)*) < Zi((F)»). Since F satisfies the hypothesis of Lemma 3.2,
Z((F)")< Z((F)"). Therefore, there exists 8 > 0 such that (F)°—8(F)? = 0. Let us set

(1) f=(F)Ye—B(F)".

Then Fx = f must have a nonnegative solution. So we may write
) f=Z% wF), =0
i=1

It follows from (2) that there exists j;, 1 =/, = n, such that

(F))s _ (Na

((F)Y)o (N

On the other hand, from (1) we have (f), < ((F)"), and (f);, = ((F)"),,, and so

(3) Y * 0, ((F)i‘),'o #0,

(4) mﬂ<&)ln)i
(Do ((F)°),
Again, by (1),
(5) (H:i=0, 1=i=j,-1, q+1=i=sr.
Thus by (2) and (5), and the fact that y,, # 0, we obtain
(6) (F)),=0, 1Sisjo-1, q+1=i=r.

Therefore, if we replace ‘(F)"0 by (F)"*, we shall get a smaller value of a by (3), (4)
and (6) except when ((F)"),=0and F,; =0, 1=j=q -1, j #j,. In the latter case we
get a smaller value of q. Thus in each case we arrive at a contradiction. This completes

the proof.
SUBLEMMA 3.3. Let A be an m X n matrix of rank r. Let S be a positive definite

symmetric bilinear form over R™. Then there exists a subset A of cardinality r of
{1,2,: -+, m} such that

(eilie AYNR(AY's=0

and
VieA, 3j, 1sj=n, A,;#0.
Proof. Let
A={i[1=i=m,3j,1=j=n,suchthat A;; #0}.
Then
R(A)c(elie )
and so

dim (R(A)*sN(e|i € A)) = (card A)—r.

By choosing A to be a maximal subset of A such that (e;|i € AYNR(A)*s =0, we get
the desired conclusion.
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We now state without proof some basic facts contained in the following two

sublemmas.
SUBLEMMA 3.4. Let A be an m X n matrix, and let b be a vector of size m. Let S

be a positive definite symmetric bilinear form over R™. Let b=b,+b,, b e R(A),
b€ R(A)"s. Then x, is a best approximate solution of the system Ax = b with respect
to S if and only if Axo = b,.

SUBLEMMA 3.5, Letr A be an m X n matrix, and b be a vector of size m. Let S be
a positive definite symmetric bilinear form over R™. Let P, Q be permutation matrices
of orders m, n respectively. Then x, is a best approximate solution of the system Ax = b
with respect to S if and only if Q 'x, is a best approximate solution of the system
(PAQ)x = Pb with respect to PSP™*.

LEMMA 3.6. Let A be an m x n nonnegative matrix of rank r. Let S be a positive
definite symmetric bilinear form over R™. Suppose that Ax = b has a nonnegative best
approximate solution with respect to S for every b 2 0.

Then there exist permutation matrices P, Q such that

{PAQ),; #0, 1si=y,
(PAQ);; =0, 1=isrn 1=2j=r i#j,
(e1=i=ryNR(PAQ)*"s* ' =0.
Proof. Let A be as in the conclusion of Sublemma 3.3. Without any loss of
generality, we may assume A ={1,2,-- -, r}. Clearly, for each k¢ A, 1 =k =m, there

exists a unique vector g, of R(A)*s such that

1, i=k, .
= +1=i=m.
(qu)i {0, %k, r+l1=i

In order to prove our lemma, it suffices to prove that A satisfies the hypothesis of
Lemma 3.2. Let Z,(u), Z(u) be as in Lemma 3.2. By way of contradiction, let (A)"
and a =Y,_, (A)' be such that

Z,(A)) s Zia) but Z((A) g Z(a).

We choose z € R(A) such that g, +z =0 for all ke{r+1, - -, m}. Further, for each
vector u e R™, let

Tw)={klr+1=k=m, ke Z(a), (u) <0}
Assume T(u)# . Let us set
p(u)=min T(u).
Next we choose positive number a (1) such that
(u+a(u)(gpw + 2))pw =0.
Now let ug= —(A)l‘, and define v,, w;, u; inductively by

Ui =alti-1)qpiueyyy Wi=aluio))z, wi=ui,+ v +ws
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We continue until Ttu,) =& for some positive integer +. For each /=1,2,-+-,1, we
have

T Tou 2y,

W piw, o = 0.

U+ Wop <0,

() =0, 1sksr, keZua).
Let t=%_ 1. w= o+ _, w, and u=u,. Let us also write p=piw,,) for con-

—_—

venience. Then
U=+ w, re RtAY S, we R(A),

(=0 forallkeZia), 1=k=m,
(w), <0,

By the definition of Z(a), there exists 8 >0 such that Ba +u =0. Further, since
peZia). (Ba+w), =(w), <0. This implies that Ax = Ba +u does not have any non-
negative best approximate solution with respect to the norm S, a contradiction. Hence

A satisfies the hypothesis of Lemma 3.2, completing the proof.
THEOREM 3.7. Let A be an m xn matrix of rank r. Let S be a positive definite

symmetric bilinear form over R™ satisfving

(%%) Sie. e) =0, 1=sism, l=sk=m.

Suppose Ax = b has a nonnegative best approximate solution with respect to § for

every b 2 0. Then there exist permutation matrices P, Q such that
J JD
raa=[} ]

Q 0 O

where

2,

z, is a positive vector of size A; and D is some nonnegative matrix; or equivalently A
has a nonnegative {1, 3}-inverse. (The zero block row in the description of PAQ may

be absent.)
Proof. By Lemma 3.6 there exist permutation matrices P, Q such that

(PAQ).; #0, l=sisry,

(PAQ),;=0, 1=ij=r i#j
and that

(e,]1=i=r)NR(PAQ)*r*'=0.
For each r + 1 = k = m, we define g, to be the unique vector in R(PAQ)*#s* " such that

(@)x=1, (q)i=0, i#k, r+l=i=m

Foreachke{r+1,-:-,m} let

px =card {jl1 =j=r, (PAQ)., #0}.

534
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We have only to show that p, =1, r+1=k =m. By way of contradiction, suppose
Pi, = 2 for some k. By (**), there exists ig, 1 Sio =7, such that

(Gre)io < 0.

Clearly, there exist nonnegative numbers a;'s, r + 1 =j = m, j # ko, such that

<_(PAO)‘“+ z aiQ:) =0
relSjsm k
j=ko

forall ke{r+1, -, m}, k #ko. Since (q«,).,, <0, there exists a,, <0 such that

(—(PAO)'“*’ )3 a,q,) =0

r~135sm k
forall ke{r+1,r+2, -, m}with k # ko and for k = /,. Since pi, 2 2, there exists jo,
1=joSr, jo# io such that (PAQ)i,, # 0. Then there exists 8 >0 such that

(-(PAO)"’*B(PAQ)'“*" )} a,q;) =0
r~1S/3m k
forallke{r+1,r+2,-- -, m}and for k = i. Finally, there exist nonnegative numbers
¥,'s, 1=j=r, j# io, such that
=~(PAQ)°+B(PAQ)°+ ¥ vi(PAQ)Y+ ¥ a,q,Z0.

lajar r-1=;3m
i#io

Since

(6- % a,q,) = —(PAQ),, <0
r-lsjam I
the equation PAQx = b does not ha\e any nonnegative best approximate soluuon
with respect to the bilinear form PSP~ Hence, by Sublemma 3.5 the system Ax = P~ 'b
does not have any nonnegative best approximate solution with respect to S, a contradic-
tion. This gives us the desired structure of A. The last statement follows from the
theorem of Berman-Plemmons [3, Thm. 5].
We now proceed to give certain remarks about sufficiency conditions in order
that for all 5, Ax = b have a nonnegative best approximate solution.
Remark 3.8. Let A be a nonnegative m X n matrix of the form

J JD
A= .
[0 0]

where J and D are as in the statement of Theorem 3.7. Let S be a positive definite
symmetric bilinear form satisfying Ste. e.)20. 1 =i, k =m. Then the following two
statements are equivalent:
(i) Ax = b has a nonnegative best approximate solution w.r.t. § for all nonnega-
tive vectors e R”.
(ii) For each v € R(A)"5, either there exists k Z (X’

-]

. A+ 1such that (1, <Oor

=1 I
Vi 1sjs-. 3k with(S A,)+1ék,§§A,

(=1 =1

such that (), =0.
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Proof. Straightforward.
Remark 3.9. Condition (i) in the above remark is automatically satisfied if S is

diagonal. Thus. for such an S, the converse of Theorem 3.7 also holds.

4. Nonnegative least squares solution. The characterization of nonnegative idem-
potent matrices plays an important role in this section. We state this in the following
lemma due to Flor [4].

LEMMA 4.1. [4. Thm. 2). Ler B be a nonnegative idempotent matrix of rank s.
Then there exists a permutation matrix P such that

J JD 00

., |0 0 00
PBP'=1 cip 0 0

0 0 00

where J is a direct sum of matrices x;y ' where x,, y; are positive vectors such thatyix; =1,
1 =i=sand C, D are nonnegative matrices of suitable sizes.

The lemma that follows characterizes all real matrices A which commute with a
nonnegative idempotent matrix B such that rank AB =rank A.

LEMMA 4.2. Let B be an idempotent matrix of rank s of the form

J JD 00

0 0 00
cJ CcJp 0 0f
0 0 00

where diagonal blocks are square matrices of orders ai, az, as, as, J is a direct sum of
m; X m;, matrices x;y| with y.x; =1 and x;, y; having no zero entry, 1=i=s.LetAbea
square matrix such that AB = BA and rank AB =rank A. Then

K KD 0 0

0 0 00
CK CKD 0 O0f

0 0 00

A:

where the diagonal blocks are square matrices of orders a,, a2, a3, Qs and K =(Kj;),
1=i, j<s where Kij=Byxiy;is an m;Xm; block matrix.

Furthermore, AB = A =BA.

Proof. Let x;; and y;; denote the ith entry of x; and y; respectively. Set

Then

(B)"'*"=§—:‘—:(B)"'*’2, 1siss, 1=h,L=m.
Therefore,
(7) (AB)"*h =244 (AB)s,  1siss, 1=h,LsEm.

Yh.i

536
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Now, we have

®) (B)' = 3 du(B),
k=1
where
Sk [ =a,,
du =< (k,|—a,)-entry of D, a,+1sl=a,+a,,
0, lza,+a,+1.

It follows from (8) that
9) (AB) = ¥ du(AB)".
k=1

By (7) and (9), we obtain
(10) R(AB)={AB)""'|1=is5s).

Let r = rank (AB). Since AB = BA, (10) implies that we can choose r linearly indepen-
dent vectors among (BA)"*', 1=i=s. By simultaneous rearrangement of rows and
columns, we may assume that (BA)""”, 1=i=r, are linearly independent. Then since
(BA)' = B(A), we get that (A)"*!,1=i=r, are linearly independent and, hence, form
a basis of R(A). Therefore an arbitrary column (A)’ of A can be expressed as

(11) (A) = T au(A).
i=1

Then

(12) (BA) = T au(BA)""".
im=1

From (7) and (12),

— yll-l
an,-*ll,i = a’l,‘"‘lz,l‘
Yip.i
The above together with (11) yields
(13) (A)h =Tl Ay,
Yi.i
Similarly,
(14) (Amety = 2L (A) ey
X1y
Set

_n+1,n+1)-entryof A

X1,iY1,j

if
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This gives the desired structure for K. Now let lza,+1. Then

Thus from (12)

Hence by (11)

(A=Y

(BA)'

S du(BA)*
k=1

i du Z ak:(BA)"'-‘
k=l

1=

Z, (ki dura)(BAY™.

a
ap = 2 diak,.
k=1

i=1 Vk=1

= 5 du(A)  (from (11)).
k=1

(from (9))

(from (12))

] ( ai dklak")(A)n'*l = kagl dkl(,é:l ak,(A)n'H)

538

Let X be the submatrix of A consisting of its first a; columns. Then by the above
equation, and by the definition of d., we obtain

A=[X XD 0 0]

A similar argument for rows yields

K
0

CK!|
0

X =

Hence A is of the desired form. The last statement is obvious. This completes the proof.

The s X s matrix (8;) in the above lemma will be referred to as a coefficient matrix
of A with respect to B. More generally, let B be an arbitrary nonnegative idempotent
matrix, and let P be a permutation matrix such that PBP'is asin Lemma 4.1. Let A
be a nonnegative matrix such that AB = BA and rank (AB)=rank A. Then we can
define a coefficient matrix (83;) of PAP' with respect to PBP'. We refer to this matrix
(B;) also as a coefficient matrix of A with respect to B. We remark that this definition
of coefficient matrix of A is unique up to similarity by a monomial matrix. For, if A,
B and P are as above and if we write

where

PBP'=UpVp,

U Xy
0 X2

V )’1

D'V _ y2

Xs

Vs
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then the coefficient matrix defined above is the s xs matrix Ap such that PAP' =
UpApVp. Note that Up and Vp are not unique even if P is fixed, but that if P, Up,
Vp are all fixed, then A, is uniquely determined. Now suppose that for some permuta-
tion matrix Q, QBQ' = UV is also as in Lemma 4.1. Then the matrix Ao such
that QAQ' = UpAoV ¢ is obtained as follows:

QAQ'=QP 'UpApVs(QPY
=(QP 'UpQ5" N QoApQ:5 Qo VEIQP ™),

where Q, is the unique s Xxs monomial matrix such that QP 'U»Qs;' =Uyp tor
equivalently, QP~'Vp Qg = Vo.) Thus,

Ag = QoArQ5 .

This justifies our remark that the coefficient matrix is determined up to similarity by
a monomial matrix. Before proving our next main result, we fix the following notation.

Let B be a nonnegative idempotent matrix of rank s. We shall without any loss
of generality assume (by using Lemma 4.1) that B is of the form

J JD 00

0 0 00
CJ CJID 0 0
0 0 0 0

where J is a matrix as in Lemma 4.1. Let C =(c¢y), 1=i=a; 1=/=a,. Letx,,, vi»s
m;, n; be as in proof of Lemma 4.2. Set

8k = i (Ci.nn-ixx.k)y 1 §} =as, 1=k= S,
i=1

hig = i gik&it» 1=k, (S5

i=1

Let S be an s X s symmetric matrix given by
2
Sii = hi + Sullxllz.

Then
2

2'Sz2= 3 (Ixlz)’+ il (kZl g,-kzk> , zeR,
=1 =1 \k=

and therefore the symmetric bilinear form defined by S is positive definite. We also
note that S is diagonal if and only if C =0.

THEOREM 4.3. Let B be the matrix as above, and let A be a nonnegative matrix
such that AB = BA and rank AB =rank A. Let Ao = (B,), 1 =1, j =5, be the coefficient
matrix of A with respect to B described in Lemma 4.2.

Then Ax = b has a nonnegative least squares solution for all nonnegative vectors
b e R(B) if and only if Aox = b has a nonnegative best approximate solution with respect
to S for all nonnegative vectors b e R’, where S is the symmetric bilinear form defined
above.
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Proof. As stated above, we assume

J JD 0 0
5= 0 0 0 0
“|cy b 0 o
0 0 0 0
where C, J, D are as in Lemma 4.1.
Let
U,
u= u:2 eR’.
U
Define u* € R®, u*, u* e R "% %" % by
A u, i=m+1, 1=lss,
(u?); = .
0 otherwise,
e, u' =[u0- - 0u0---0u0---07,
uyx, u*
w UxXxs v Oaz
u = . , = R
Cu*
1795 & O,

where x, 1 =i=s, are the vectors appearing in the representation of the matrix B.
We note that v is an isomorphism from R’ onto R(B), and indeed, » maps nonnegative
vectors in R® to nonnegative vectors in R(B).
Let
Uy
v=|v;|€eR

aléazd»a‘*a‘

We define v? e R®, v¥ e R® %797 % a5 follows:
(V%)= Vw1, 1185, 0¥ =((X7'SXHo®),

where X is an s X s matrix such that X ; = 8iix1.x. We claim

(15) (u*)® = Xu, uelR
(16) (u*)*)® = XSy, ueR’,
(17) v—v*e R(B)*, ve R(B).

Since (4" )p+1 = x1u, 1 S1=5, claim (15) follows immediately. Further, since (v9)? =
(X"SX")v"’, claim (16) follows from claim (15). We now proceed to prove claim
(17). Since {(e;)"|1=1=5} is clearly a basis of R(B), and since the operation ¢ is

linear, it suffices to prove the claim (17) for v = (¢;)". By definition of v, we have
X i=m+j, 1=5j=m,
((e))i =< gin i=ay+ax+j, 1=j=as,
0 otherwise.
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By (16),
1 2 )
Y — (hit + Suallxll2), i=n.+1, 1=kss
(((er) )w)i =4{X1,k
0 otherwise.

By actual computations we obtain
((e)")*) (ex)” = b+ Buallxeli = ¥ gugie + O f, (xie)? = ((en)”)' (€x)”,
j=1 =

Therefore
((e)) —((e)*)*) (ex)" =0, 1=LkSs.

Hence
(e)' —((e)")' €eR(B)*, 1sISs.

This proves our claim (17).
Now assume Ax = b has a nonnegative least squares solution for all nonnegative

vectors b € R(B), and let ¢ be an arbitrary nonnegative vector in R’. Since ¢” € R(B),
Ax = ¢" has a nonnegative least squares solution, say

h
f= f-z .
Then
(18) =" % flA) +w,  wieR(A"
i=]
Further, since each (A) can be expressed as a nonnegative linear combination of
(A, -+, (A)""', we may assume in (18) that f; =0, i#nm+1, 1 =/=s.
Next, we claim
(19) (A" =y((A0)), 1=I=s
To prove (19) let
Buxi
d = Bz'lxz )
Bxlxx
Then
Y1.ld1
. 0
(A)n, 1 = .
C)'l.ldl
0
Therefore,

(A" =y,((A)"), 1sIss,

as desired.
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Then, by (181, 119) and by the assertion following 1 181. we have

3 .
(20) C’ = S fn__l_\'l.[llAU) )‘ -~ Wy,

=1

Set

wa=c' —(c",

2=(Ad) (AN, 1=lss
Then by (17) w3, 2;€ R(B)- 2 R(A)". Also, by (20),

(21) €= T frov AN ) + s,
=1

where

s
Wi = wuy *‘( ¥ fn,—l,\'x.121> — W,
!

=1

and thus wye R(A)". Set w'=(X"'$)""(w3)%. By (16) and (21),
(X 'Sic =1f1 frmt Y LUX TISNAD ) + (X 'S,

It then follows that

(22) ¢ =1_il faoryistAo) + W',

Since w3e R(A)", we get from (19),

(23) ((A0)))wy=0, 1sISs.
Also, by (21), (wa), =0, i #n;+1, 1 =]/ =5 Therefore, we may rewrite (23) as
(23" (X(A0)) (w3)* =0
by using (15). Then by (23'), together with the definition of w’, we have
((Ao))'Sw'=0.

Hence, w’'e R(Ao)"s. Thus (22) gives us a nonnegative best approximate solution of
Agx = ¢ with respect to the norm S.

We can retrace the steps back to prove the “if”’ part of the theorem, completing
the proof.

Combining Theorems 3.7 and 4.3, we obtain the following main result.

THEOREM 4.4. Let B be a nonnegative idempotent matrix. Let A be a nonnegative
matrix such that AB = BA and rank (AB)=rank A. Let A, be a coefficient matrix of
A with respect to B. Suppose that the equation Ax = b has a nonnegative least squares
solution for all nonnegative vectors b € R(B). Then there exist permutation matrices P,
Q such that Aq can be expressed in the form

G GL]

PA°O=[0 0
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where

z; are positive vectors and L is a nonnegative matrix, or equivalently, Ao has a
nonnegative {1, 3}-inverse.

We give an example to demonstrate that the converse of Theorem 4.4 is not
necessarily true.

Example 4.5. Let

1 0 00 1100
0100 1100
B=1o 01 o A4=100 1 0
2110 3310

Then B = B?, AB = BA, rank (AB)=rank A =2 and a coefficient matrix A, of A is
given by

QO =
O =
- O O

Although A, has a nonnegative {1, 3}-inverse, we may verify that the system Ax =5,
where

does not possess a nonnegative least squares solution. For, if we write b = b, ~ b, where

5 -5
5 8

b= _q e R(A), b= 1 € R(A)",
14 -1

then by Sublemma 3.4 a least squares solution x, must satisfy Ax,=b,. But then x,
cannot be nonnegative.

Remarks 4.6. (1) Recall from Remark 3.9 that if the positive definite symmetric
bilinear form § is diagonal, then the existence of a nonnegative {1, 3}-inverse of a
matrix A is equivalent to the existence of nonnegative best approximate solution of
Ax = b for all nonnegative vectors b. Also recall that the symmetric bilinear form §
in Theorem 4.3 is diagonal if and only if the matrix C in Lemma 4.1 is zero. Therefore,
it follows that the converse of Theorem 4.4 holds if C =0.

(2) Example 4.5 shows that the converse of Theorem 4.4 does not hold. Neverthe-
less, we can show that if an m X m matrix A is as in the conclusion of Theorem 4.4,
then there exists a positive definite symmetric bilinear form § over R™ such that
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Ax = b has a nonnegative best approximate solution with respect to S for all nonnega-
tive vectors b€ R(B).

(3) Let B be an /n X n (not necessarily square) nonnegative matrix of rank s such
that

(PoBQy),, %0, 1=i=s,  (PoBQo), =0, 1=ij<s, i#j

for suitable permutation matrices Py and Qy. Let A be an m X/ nonnegative matrix
such that R(A)< R(B). Let A, be the matrix consisting of the first s rows of P,AQ,.
With A, B and A; as above, arguments similar to the proof of Theorem 4.3 prove
the following:

If Ax =b has a nonnegative least squares solution for all nonnegative

b€ R(B), then Ay has a nonnegative {1, 3}-inverse.
In case A and B are as in Theorem 4.4, we give below the relation between a coefficient
matrix Ao = (8;) and the matrix Ag. It follows as a consequence that the existence of
a nonnegative {1, 3}-inverse of Ay implies that of A, and vice versa. Let P be as in
Lemma 4.1. Also let the notation be as in the proof of Lemma 4.2 with B replaced
by PBP'. Further, let P, be a permutation matrix which sends the (n; + 1)th row to
the ith row. Set Po=P,P and Qo= Py. Then Py,BQq is in the form stated at the
beginning of this remark. With this choice of Py and Qq, we have

_ (A(’))ll

= , 1=ijss.
X1.iY1,j

Bli

Since every column of A; can be written as a nonnegative linear combination of the
first s columns of Ay, the existence of a nonnegative {1, 3}-inverse of one of A, or
Ay implies that of the other.
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