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ABSTRACT

We study nonnegative matrices A such that I'(A) =T"(A). As a consequence we
obtain Flor's characterization of nonnegative idempotent matrices and other well-
known results.

1. DEFINITIONS AND NOTATION

A matrix A =(a,;) is called nonnegative if a;;>0 for all i, f, and a
matrix A is called positive if a; ;>0 for all 1, j. To denote nonnegative and
positive matrices, we write A > 0 and A > 0, respectively.

As usual, we define the (directed) graph of an m X m matrix A = (aq, j)to
be the graph I'(A) with vertices 1,2,...,m, where (i, §) is an edge if and
only if a,; # 0.

A patiz of length n is a sequence of n edges (ig,1,),(i;,15),--.,(i,_ 15 1,)
in which the terminal vertex of one edge is the initial vertex of the next. A
directed graph I'(A) of a matrix A is strongly connected if for any ordered
pair (i, j) of vertices of I'(A), there exists a path which leads from i to j. An
edge (i, 1) is called a loop. If the graph of a matrix is strongly connected, then
the matrix is called irreducible. A matrix A is called primitive if some power
of A is positive. When a matrix A is in the block form

A 11 A 12 A 13 A 1p
A 21 A 22 A 23 A 2p
A pl A p2 A p3 A pp
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we define the block graph of A to be the graph T'p(A) with vertices
1,2,..., p, where (i, j) is an edge if and only if A;;# 0.

Given a matrix A, a maximal strongly connecteé subgraph of the graph of
A is called a strong component of the graph of A. Vertices which do not
belong to any strong component are called singular vertices. Given a nonneg-
ative matrix A, we may relabel the strong components and singular vertices
to obtain a matrix which is in the familiar (lower triangular) Frobenius
normal form. Relabeling of strong and singular components is equivalent to
the existence of a permutation matrix P such that

A, 0 0O 0
PAPT = A, Ay O 0
Apl Ap2 Ap3 App

where each diagonal block A,; is irreducible or a 1X 1 zero matrix. The 1 X1
zero matrices correspond to singular vertices in the graph of A. Given a
nonnegative matrix A and a permutation matrix P, the graph of PAPT is a
relabeling of the vertices of the original graph of A. Hence for any two
matrices A and B, [(A)=I(B) implies [(PAPT) = T(PBP”) for any per-
mutation matrix P.

A block matrix (of size h X h) of the form

0 A, O 0

0 0 Ay 0
P ’

0 0 0 An_1n

A, 0 0 0

where A,,#0 and each A,;,;#0 for i=1,...,h—1, is called a cyclic
matrix of index h. If, in addition, A,, and each A, ., is positive, then the
matrix A will be called a complete cyclic matrix of index h, and its associated
graph T(A) will be called a complete cyclically h-partite graph. Note that the
partitioning of the matrix induces a partition of the set of vertices into subsets
PY PO . PP,

If T, and T, are graphs, then the product graph I'I; is defined as
follows: (i, j) €T\T, if there is a k€ V= {1,2,...,n} such that (i,k) €I,
and (k,j)eT,. We write [2=TT, I'*=T?T, and so on. Let A=
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GRAPH OF NONNEGATIVE MATRICES 183
{(i,i): i € V). The reflexive transitive closure T of a graph T is defined by
T=AuTuT?yU---.

Thus, (i, j) € T if and only if there is a path from i to j in T.
The following is a simple fact about nonnegative matrices A and B [9].

ProposiTioNn 1. For ¢ #0, I'(cA)=T(A); T(A+ B)=T(A)UI(B);
T(AB) =T(A)T(B). Therefore, if A>0, T(A")=T(A)(4)---T(A) (n
factors). Thus T(A")=T"(A).

2. PRELIMINARY RESULTS

SusLEMMA 2.1. Let A be a nonnegative primitive matrix. Then for
n>1, T(A)=T"(A) if and only if A> 0.

The proof of this sublemma is obvious.
Lemma 2.2. Let A be a nonnegative irreducible matrix which is not

primitive, such that T(A)=T"(A) for some n>2. Then there exists a
permutation matrix P such that

0 A, O 0
PAPT=}| ..... OA” ......... O ,
0 0 An_1n
A, O 0 0

where A,;>0and A;_,;>0,i=2,...,h, and n=1 (mod h), that is, ['(A)
is a complete cyclically h-partite graph.

Proof. Since A is not primitive, there exists a permutation matrix P such
that

0 A, O 0
PAPT=1| ..... OA” ......... O ,
0 0 An_1n
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where A, #0 and A,_,;#0, i=2..., h. We first observe that n =1 (mod
h), since n#1 (mod h) along with I'(A)=T"(A) implies A =0. Write
n=qgh+1 for g = 1. Then

0 A, O 0
0 0 CiAy 0
PAnPT___PAqh+1PT___ ................................ ,
0 0 0 C}?—IAh—lh
CfA,, O 0 0

where C,= A,,, A, 1,42 - A,_; (indices taken mod h) and each C; is
primitive [2]. Hence T(A)=T"(A) if and only if C7A,, ; and A,,,, have
the same zero pattem for all i=12,....,h (indices taken mod h). This
implies C%'A;,,, and A,,,, also have the same zero pattern for all j>0.
Since C, is primitive, C/ > 0 for all r > s for some 5. Now choose some j such
that C9% is positive. Since A is irreducible, A,,,, has no zero rows and no
zero columns. Hence C¥A,,,, is positive, and so it follows that A, is
positive, i=1,2,...,h—1,h (indices taken mod h). This completes the
proof. a

REMARK 2.3. If A is a nonnegative irreducible matrix such that I['(A) =
I'3(A), then A is positive.

Lemma 2.4. Let a, B, and n be positive integers with n>1, ajn -1
and B | n—1, and d = ged(a, B). Then there exist A, AN, p' >0 such that
n=Aa+pB+d+landn=Na+pB—-d+1

Proof. Write a/d =« and B/d=p’, then clearly (&', 8’)=1. This,
together with o’ | (n—1)/d and B'|(n—1)/d implies a’8’ | (n —1)/d, so
that (n —1)/d > /" and hence (n—1)/d - 1> af’ =12 (' =1(B' - 1)

Since any positive integer > (a’—1)(8’—1) is an integral nonnegative
linear combination of a’ and B, there exist A, g > 0 such that Aa’+pp’=
(n—1)/d — 1. [See A. Brauer, Amer. J. Math. 64:302 (1942), Corollary.]
Thus, Aa+ pB +d =n—1. Similarly, n =Na+pB—d +1. =

REMARK 2.5. Assume the hypothesis in Lemma 2.4. If n —¢t =Aa+ppf
where A,p>0and t >1,thent=1d +1 for some [ > 0.
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! ]
Py p@ pth-b pm
Fic. 1

Let A=(A,;) be a matrix in Frobenius form, and let A, and A}, be
cyclic matrices of index h, and h, respectively, for some i and j. If P, and
P; are the subsets of vertices of i"(A) corresponding to the cyclic matrices
A, and A, then (as defined earlier) PV, I=1,...,h;, and P{™, m=
1,..., hj, will denote the partitioning of the sets P, and Pj induced by the
cyclicity of A;; and Aj;. The sets P, and P; will be referred to as classes of
types h; and h;, and P{) and P{™) as their subclasses in T(A), respectively.
If A,, is positive, then we say P; is a complete class.

A complete cyclically h-partite graph can be represented by a diagram as
in Figure 1, where — indicates that there is an edge from any vertex in PO

to any vertex in P**1 k=1,..., h (superscripts mod h).

Lemma 26.  Let A >0, with T(A)=T"(A). Let PAPT=(A,)) be a
Frobenius form of A such that A, and A, are cyclic of index h; and h;,
respectively, with P, and P, being the classes of types h, and h; correspond-
ing to A, and A If there is an edge from P® to P(™, 1<li<h,
1< m<hy, then for each x € P and y € P{™, (x,y) is an edge in T(A).

Proof. 1t is clear from Remark 2.3 that n > 2. Now from Lemma 2.2,
A, is a complete cyclic matrix of index h; and h, |n—1. Let rePY,
s € P{™ such that (r,s) €I(A). For x € P, it is easy to determine from
the diagram in Figure 2 that there exists a path of length kh; +1 from x to s
for all k> 1. Since h, | n — 1, there exists a path of length n from x to s.
Hence, there is an edge from x to s. Similarly, since there is an edge from x
to s, for each y € Pj("‘), there is a path of length n (hence an edge) from
x toy. |
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! ]
> > > > P A
P r
Pi(l) Pi(2) P.'(h‘)
s
- > 4 e > 1>
F;
1) p(2) (m (hy)
Pj( )Pj Pj ) P] §
Fic. 2

3. MAIN RESULT

Tueorem 3.1. Suppose A is a nonnegative matrix such that T(A)=
I'"(A). Let PAPT=[A,]],x, be a Frobenius form of A where P is a
permutation matrix. If A;;#0 foralli=1.2,...,p, then

(i) A,>0 or A, is a complete cyclic matrix of index h where n=1
(mod h);

(i) for j<i,i=1,...,p, and for the blocks A,; and A ; of sizes h, X h,
and h; X h;, respectively, A;; is a direct sum of matrices of the type

0 . 0 . 0 0
* - 0 0 * 0
0 . 0 . 0 0 .
* 0 0 ] 0 0 ]
0 . 0 . 0 . ’
- - 0 -
[ 0 « 0
* - 0 . 1)
0 . 0 0 . 0 0 . 0
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where the distance between any two consecutive nonzero diagonals is d;; =
ged(h, b, i) and asterisks represent positive blocks; and
(iii) the block graph of A is transitively closed.

Proof. (i): Since T(A)=T"(A), T(A;,)=T"(A,); thus the result fol-
lows from Lemmas 2.2 and 2.1.

(ii): Suppose A,; is cyclic of index h, and A ; is cyclic of index h;. Then

A, and A; corresponds to classes F;, P; with subclasses PV, P®,.. ., Ph)

and P, P‘Z) P"‘ ), respectively. Now suppose A,; # 0; then there are
re P(” SEP‘"" such that (r,s)€T(A). Now we show this implies the
existence of edges from P{" to P{™*4 and PV to P{" %), 1< m +d,
hJ Since (7, s) is an edge in T'(A), forall A, u > O there is a path from P(”’ to
P<"'+‘1 ? of length Ah, + ph;+d,; + 1. Consequently, by Lemma 2.4, there is
a path of length n from P") to P""*d-l’ and so there is an edge from P{" to
P(m=d.) since I'(A)=T"(A). Since there is an edge from P{") to P‘”‘*dw)
for all A, u> 0O there is a path of length Ah, + ph;—d;; +1 from P,b“) to
P(™*Y By Lemma 2.4, there is a path of length n (hence an edge) from
PU*D to P™* D, Similarly we can obtain an edge from P/~ toP{™~". Our
argument shows that if there is an edge from P! to P("') then there exist
edges from

(a) P to P(’"*d ),
(b) P(lil) tO p(nlih

This translates to: If (4,;), ,, # O then

(a) (A”)l m+d ¢O
(b) (Anj)(’+l)(mil):#0

By repeating the same argument with the new nonzero entries of A, j we
obtain A, as a direct sum of matrices of the desired form. By Lemma 2.6,
each nonzero block is a positive block. Lemma 2.5 guarantees that the edge
(r,s) in T(A) will not give rise to any edge other than the ones described
above. Notice when h;=1or h;=1, then A;; or A; is a positive matrix. In
this case d;; = ged(h;, h;) =1, and soA;#0 1mphes A;;>0.

(iii): To show FB(A) is transitively closed suppose A i *0 and A, #0.
Then both A;; and A, must be sums of matrices of the type described in
(ii). Therefore A"T2A, jAjx is a nonzero sum of matrices of the type
described in (ii). Smce a nonzero (u,v) entry in A" ZA, jA jx implies a
nonzero (u,v) entry in A, it follows that A, # 0 Hence Fg(A) is
transitively closed. =
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ReEmaRrk. It is possible to obtain similar results about the structure of the
Frobenius form without the assumption that A, # 0 for all i. However, there
are very many cases that need to be described.

CoroLLaRY 3.2. Suppose A is a nonnegative matrix and PAPT =
[Aijlpxp is a Frobenius form of A, where P is a permutation matrix. If
A;#0 for all i=12,...,p, then T(A)=T%*A) if and only if A,,>0
(i=12,...,p), A, is zero or positive for j < i, and the block graph of A is
transitively closed.

ConroLrLary 3.3.  Assume the hypothesis in Corollary 3.2. Then T(A) =
I'3(A) implies:
(i) A;;>0 or A, is a complete cyclic matrix of index 2,
(i) forj<i, A, is either
(a) zero,
(b) positive,
(¢) of the form [? * ] or

0
» 0
(d) of the form [0 . ];
(iii) the block graph of A is transitively closed.

ReEmark 3.4. It is natural to ask whether the converse of the theorem is
true. The answer is in the affirmative if n = 2, as we have seen in Corollary
3.2. However, for n > 3, further restrictions on the block structure of A must
be made. For example, in order to obtain sufficiency for the case n = 3, the
following must be included along with conditions (i)~(iii) above:

Giv) If A, ;> 0, then either class P; has access to class P; via a complete class
in the block graph, or there exists [, k, I’, k’ such that AgAyA,; is of
the form [8 ‘] and A, AppAy; is of the form *

0 0
each * represents a positive matrix (possibly rectangular).

(v) If A;; is of the form [ 9 8 ], then for all k, I, either A AnAy is zero

or it is of the same form.

, where

(vi) If A, is of the form 6 (3 ], then for all k, I, either AugApA); is zero

or it is of the same form.
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We give an example of a matrix A with I'(A)= I'*(A) to illustrate the
structure described in Theorem 3.1.

ExampLE 3.5. Let

where

- O OO
SO O
o~ O

and

We note the following:

(i) A,|, Ay are cyclic matrices of index 4, 2, respectively, and 5=1
(mod h), where h =4 or 2.

(ii) The distance between any two nonzero consecutive diagonals of A,;
is 2, which is the ged of 4 and 2.

(iii) The block graph of A is as shown in Figure 3, and is transitively
closed.

Fic. 3
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4. APPLICATIONS

The following is perhaps well known. However, we are not aware of an
elementary proof which does not depend upon some other important result.

LemMma 4.1.  Let E be a nonnegative idempotent irreducible matrix. Then
rank E=1, and so E=xy", x>0, y> 0, y'x=1

Proof. The spectral radius of E is 1, and by the Perron-Frobenius
theorem, 1 is a simple eigenvalue of E. That is, 0 is a simple eigenvalue of
1 — E. This implies that the dimension of the null space of (I - E) is 1. The
rows of E are eigenvectors of (I — E)T corresponding to eigenvalue 0, since
(I — E)TET = 0. This proves that the dimension of the row space of E is I.
Hence rank E =1, so E = xy”, x,y > 0. Since E is irreducible, it follows that
E>0. |

Tueorem 4.2 [2]. Let A be a nonnegative idempotent matrix with no
zero rows and no zero columns. Then there exists a permutation matrix P such

that

Y, 0 0
PAPT=| 0 x4, 0
0 0 Xyl

where x,,y,> 0 and ylx, = 1.

Proof. We know that there exists a permutation matrix P such that

Al 0 0
PAP'=|Aa Ay 0
Apl AP2 App

Since there are no zero rcws and no zero columns, A;; #0 and A #0.
Suppose A, =0 for some i, 2<i<p—1. Let k be the largest integer such
that A,, =0,2<k<sp—-LIf A =0forall I=k+1L,k+2,...,p, then the
kth column of A is zero, which is not true under our hypothesis. Therefore,
Ay, #0 for some I=k+1,k+2,...,p. Then, since A= A2, it follows that
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A is positive. For [ > k +1 we have A, > 0 by the choice of k. Since A,; is
idempotent and irreducible, by Lemma 4.1, A, = x,y/, where y/x,=1 and
x;>0, y,> 0. Then A = A? yields

AIj = AllAlj + Z AIiAij
i<i<l

= xlleAlj + Z Al:‘Aij'
j<i<l

Multiplying this equation on the left by y7, we have Yi(C;ci<1ALA)=0.
Since y; > 0, this implies A;;A;;=0forall i=j,j+1,...,1—1. In particu-
lar, when i =k, A A;;=0for j=1,2,...,k 1. Since Ay, > 0, this implies
Akj=0 for all j=1,2,...,k—1. That is, the kth row of A is zero, a
contradiction. Therefore, A;;#0 for all i. Similarly, the equation A, =
AyA i+ AGAL+T i AgAy;yields A =0forall j<i,since A, =x,y7
where ylx, = 1. [ ]

Remark 4.3. If A is any matrix, then there exists a permutation matrix
P such that

PAPT =

SO~
ORo X
SO OO
SO0 O

where J, K have no zero rows in common, and J, L have no zero columns in
common. In case A is idempotent, it immediately follows that K= JD,
L =CJ, M =CJD, where ] is an idempotent matrix with no zero rows and no
zero columns. Thus by the above theorem the well-known characterization of
any nonnegative idempotent matrix may be obtained.

REMARK 4.4. By applying Theorem 3.1 we can also obtain the well-known
characterizations of nonnegative matrices A such that A= A" [1, 5, 7, 8].

The authors would like to thank the referee for his suggestions and
comments.
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