On the Periodicity of the Graph of Nonnegative Matrices

Ananda D. Gunawardena, S. K. Jain, and Larry Snyder Department of Mathematics Ohio University Athens, Ohio 45701

Submitted by Abraham Berman

ABSTRACT

We study nonnegative matrices A such that $\Gamma(A) = \Gamma^n(A)$. As a consequence we obtain Flor's characterization of nonnegative idempotent matrices and other well-known results.

1. DEFINITIONS AND NOTATION

A matrix $A = (a_{ij})$ is called nonnegative if $a_{ij} \ge 0$ for all i, j, and a matrix A is called positive if $a_{ij} > 0$ for all i, j. To denote nonnegative and positive matrices, we write $A \ge 0$ and A > 0, respectively.

As usual, we define the (directed) graph of an $m \times m$ matrix $A = (a_{ij})$ to be the graph $\Gamma(A)$ with vertices 1, 2, ..., m, where (i, j) is an edge if and only if $a_{ij} \neq 0$.

A path of length n is a sequence of n edges $(i_0, i_1), (i_1, i_2), \ldots, (i_{n-1}, i_n)$ in which the terminal vertex of one edge is the initial vertex of the next. A directed graph $\Gamma(A)$ of a matrix A is strongly connected if for any ordered pair (i, j) of vertices of $\Gamma(A)$, there exists a path which leads from i to j. An edge (i, i) is called a loop. If the graph of a matrix is strongly connected, then the matrix is called *irreducible*. A matrix A is called *primitive* if some power of A is positive. When a matrix A is in the block form

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1p} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} & A_{p3} & \cdots & A_{pp} \end{pmatrix},$$

LINEAR ALGEBRA AND ITS APPLICATIONS 120:181-192 (1989)

181

© Elsevier Science Publishing Co., Inc., 1989 655 Avenue of the Americas, New York, NY 10010

0024-3795/89/\$3.50

we define the block graph of A to be the graph $\Gamma_B(A)$ with vertices 1, 2, ..., p, where (i, j) is an edge if and only if $A_{ij} \neq 0$.

Given a matrix A, a maximal strongly connected subgraph of the graph of A is called a strong component of the graph of A. Vertices which do not belong to any strong component are called singular vertices. Given a nonnegative matrix A, we may relabel the strong components and singular vertices to obtain a matrix which is in the familiar (lower triangular) Frobenius normal form. Relabeling of strong and singular components is equivalent to the existence of a permutation matrix P such that

$$PAP^{T} = \begin{pmatrix} A_{11} & 0 & 0 & \cdots & 0 \\ A_{21} & A_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} & A_{p3} & \cdots & A_{pp} \end{pmatrix},$$

where each diagonal block A_{ii} is irreducible or a 1×1 zero matrix. The 1×1 zero matrices correspond to singular vertices in the graph of A. Given a nonnegative matrix A and a permutation matrix P, the graph of PAP^T is a relabeling of the vertices of the original graph of A. Hence for any two matrices A and B, $\Gamma(A) = \Gamma(B)$ implies $\Gamma(PAP^T) = \Gamma(PBP^T)$ for any permutation matrix P.

A block matrix (of size $h \times h$) of the form

$$A = \begin{pmatrix} 0 & A_{12} & 0 & \cdots & 0 \\ 0 & 0 & A_{23} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{h-1h} \\ A_{h1} & 0 & 0 & \cdots & 0 \end{pmatrix},$$

where $A_{h1} \neq 0$ and each $A_{ii+1} \neq 0$ for i = 1, ..., h-1, is called a cyclic matrix of index h. If, in addition, A_{h1} and each A_{ii+1} is positive, then the matrix A will be called a complete cyclic matrix of index h, and its associated graph $\Gamma(A)$ will be called a complete cyclically h-partite graph. Note that the partitioning of the matrix induces a partition of the set of vertices into subsets $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$.

If Γ_1 and Γ_2 are graphs, then the product graph $\Gamma_1\Gamma_2$ is defined as follows: $(i,j)\in\Gamma_1\Gamma_2$ if there is a $k\in V=\{1,2,\ldots,n\}$ such that $(i,k)\in\Gamma_1$ and $(k,j)\in\Gamma_2$. We write $\Gamma^2=\Gamma\Gamma$, $\Gamma^3=\Gamma^2\Gamma$, and so on. Let $\Delta=$

 $\{(i,i):i\in V\}$. The reflexive transitive closure $\overline{\Gamma}$ of a graph Γ is defined by

$$\overline{\Gamma} = \Delta \cup \Gamma \cup \Gamma^2 \cup \cdots$$

Thus, $(i, j) \in \overline{\Gamma}$ if and only if there is a path from i to j in Γ .

The following is a simple fact about nonnegative matrices A and B [9].

PROPOSITION 1. For $c \neq 0$, $\Gamma(cA) = \Gamma(A)$; $\Gamma(A+B) = \Gamma(A) \cup \Gamma(B)$; $\Gamma(AB) = \Gamma(A)\Gamma(B)$. Therefore, if $A \geqslant 0$, $\Gamma(A^n) = \Gamma(A)\Gamma(A) \cdots \Gamma(A)$ (n factors). Thus $\Gamma(A^n) = \Gamma^n(A)$.

2. PRELIMINARY RESULTS

Sublemma 2.1. Let A be a nonnegative primitive matrix. Then for n > 1, $\Gamma(A) = \Gamma^n(A)$ if and only if A > 0.

The proof of this sublemma is obvious.

Lemma 2.2. Let A be a nonnegative irreducible matrix which is not primitive, such that $\Gamma(A) = \Gamma^n(A)$ for some n > 2. Then there exists a permutation matrix P such that

$$PAP^{T} = \begin{pmatrix} 0 & A_{12} & 0 & \cdots & 0 \\ 0 & 0 & A_{23} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots & A_{h-1h} \\ A_{h1} & 0 & 0 & \cdots & 0 \end{pmatrix},$$

where $A_{h1} > 0$ and $A_{i-1} > 0$, i = 2, ..., h, and $n \equiv 1 \pmod{h}$, that is, $\Gamma(A)$ is a complete cyclically h-partite graph.

Proof. Since A is not primitive, there exists a permutation matrix P such that

$$PAP^{T} = \begin{pmatrix} 0 & A_{12} & 0 & \cdots & 0 \\ 0 & 0 & A_{23} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{h-1h} \\ A_{h1} & 0 & 0 & \cdots & 0 \end{pmatrix},$$

where $A_{h1} \neq 0$ and $A_{i-1} \neq 0$, i = 2..., h. We first observe that $n \equiv 1 \pmod{h}$, since $n \not\equiv 1 \pmod{h}$ along with $\Gamma(A) = \Gamma^n(A)$ implies A = 0. Write n = qh + 1 for $q \geqslant 1$. Then

$$PA^{n}P^{T} = PA^{qh+1}P^{T} = \begin{pmatrix} 0 & c_{1}^{q}A_{12} & 0 & \cdots & 0 \\ 0 & 0 & C_{2}^{q}A_{23} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & C_{h-1}^{q}A_{h-1h} \\ C_{h}^{q}A_{h1} & 0 & 0 & \cdots & 0 \end{pmatrix},$$

where $C_i = A_{ii+1}A_{i+1i+2}\cdots A_{i-1i}$ (indices taken mod h) and each C_i is primitive [2]. Hence $\Gamma(A) = \Gamma^n(A)$ if and only if $C_i^q A_{ii+1}$; and A_{ii+1} have the same zero pattern for all $i=1,2,\ldots,h$ (indices taken mod h). This implies $C_i^{qj}A_{ii+1}$ and A_{ii+1} also have the same zero pattern for all j>0. Since C_i is primitive, $C_i^r>0$ for all r>0 for some s. Now choose some j such that C_i^{qj} is positive. Since A is irreducible, A_{ii+1} has no zero rows and no zero columns. Hence $C_i^{qj}A_{ii+1}$ is positive, and so it follows that A_{ii+1} is positive, $i=1,2,\ldots,h-1,h$ (indices taken mod h). This completes the proof.

REMARK 2.3. If A is a nonnegative irreducible matrix such that $\Gamma(A) = \Gamma^2(A)$, then A is positive.

LEMMA 2.4. Let α , β , and n be positive integers with n > 1, $\alpha \mid n-1$ and $\beta \mid n-1$, and $d = \gcd(\alpha, \beta)$. Then there exist λ , μ , λ' , $\mu' > 0$ such that $n = \lambda \alpha + \mu \beta + d + 1$ and $n = \lambda' \alpha + \mu' \beta - d + 1$.

Proof. Write $\alpha/d = \alpha'$ and $\beta/d = \beta'$, then clearly $(\alpha', \beta') = 1$. This, together with $\alpha' \mid (n-1)/d$ and $\beta' \mid (n-1)/d$ implies $\alpha'\beta' \mid (n-1)/d$, so that $(n-1)/d \ge \alpha'\beta'$ and hence $(n-1)/d - 1 \ge \alpha'\beta' - 1 \ge (\alpha'-1)(\beta'-1)$.

Since any positive integer $\geqslant (\alpha'-1)(\beta'-1)$ is an integral nonnegative linear combination of α' and β' , there exist $\lambda, \mu \geqslant 0$ such that $\lambda \alpha' + \mu \beta' = (n-1)/d-1$. [See A. Brauer, Amer. J. Math. 64:302 (1942), Corollary.] Thus, $\lambda \alpha + \mu \beta + d = n-1$. Similarly, $n = \lambda' \alpha + \mu' \beta - d + 1$.

REMARK 2.5. Assume the hypothesis in Lemma 2.4. If $n-t=\lambda\alpha+\mu\beta$ where $\lambda,\mu\geqslant 0$ and $t\geqslant 1$, then t=ld+1 for some $l\geqslant 0$.

185

Fig. 1

Let $A = (A_{ij})$ be a matrix in Frobenius form, and let A_{ii} and A_{jj} be cyclic matrices of index h_i and h_j , respectively, for some i and j. If P_i and P_j are the subsets of vertices of $\Gamma(A)$ corresponding to the cyclic matrices A_{ii} and A_{jj} , then (as defined earlier) $P_i^{(l)}$, $l = 1, \ldots, h_i$, and $P_j^{(m)}$, $m = 1, \ldots, h_j$, will denote the partitioning of the sets P_i and P_j induced by the cyclicity of A_{ii} and A_{jj} . The sets P_i and P_j will be referred to as classes of types h_i and h_j , and $P_i^{(l)}$ and $P_j^{(m)}$ as their subclasses in $\Gamma(A)$, respectively. If A_{ii} is positive, then we say P_i is a complete class.

A complete cyclically h-partite graph can be represented by a diagram as in Figure 1, where \rightarrow indicates that there is an edge from any vertex in $P^{(k)}$ to any vertex in $P^{(k+1)}$, k = 1, ..., h (superscripts mod h).

Lemma 2.6. Let $A \ge 0$, with $\Gamma(A) = \Gamma^n(A)$. Let $PAP^T = (A_{ij})$ be a Frobenius form of A such that A_{ii} and A_{jj} are cyclic of index h_i and h_j , respectively, with P_i and P_j being the classes of types h_i and h_j corresponding to A_{ii} and A_{jj} . If there is an edge from $P_i^{(l)}$ to $P_j^{(m)}$, $1 \le l \le h_i$, $1 \le m \le h_j$, then for each $x \in P_i^{(l)}$ and $y \in P_j^{(m)}$, (x, y) is an edge in $\Gamma(A)$.

Proof. It is clear from Remark 2.3 that n > 2. Now from Lemma 2.2, A_{ii} is a complete cyclic matrix of index h_i and $h_i \mid n-1$. Let $r \in P_i^{(l)}$, $s \in P_j^{(m)}$ such that $(r, s) \in \Gamma(A)$. For $x \in P_i^{(l)}$, it is easy to determine from the diagram in Figure 2 that there exists a path of length $kh_i + 1$ from x to s for all $k \ge 1$. Since $h_i \mid n-1$, there exists a path of length n from n to n. Hence, there is an edge from n to n to n to n to n for each n is a path of length n (hence an edge) from n to n to n.

Fig. 2

3. MAIN RESULT

THEOREM 3.1. Suppose A is a nonnegative matrix such that $\Gamma(A) = \Gamma^n(A)$. Let $PAP^T = [A_{ij}]_{p \times p}$ be a Frobenius form of A where P is a permutation matrix. If $A_{ii} \neq 0$ for all i = 1, 2, ..., p, then

- (i) $A_{ii} > 0$ or A_{ii} is a complete cyclic matrix of index h where $n \equiv 1 \pmod{h}$;
- (ii) for j < i, i = 1,..., p, and for the blocks A_{ii} and A_{jj} of sizes $h_i \times h_i$ and $h_j \times h_j$, respectively, A_{ij} is a direct sum of matrices of the type

where the distance between any two consecutive nonzero diagonals is $d_{ij} = \gcd(h_i, h_i)$ and asterisks represent positive blocks; and

(iii) the block graph of A is transitively closed.

Proof. (i): Since $\Gamma(A) = \Gamma^n(A)$, $\Gamma(A_{ii}) = \Gamma^n(A_{ii})$; thus the result follows from Lemmas 2.2 and 2.1.

(ii): Suppose A_{ii} is cyclic of index h_i and A_{jj} is cyclic of index h_j . Then A_{ii} and A_{jj} corresponds to classes P_i , P_j with subclasses $P_i^{(1)}$, $P_i^{(2)}$,..., $P_i^{(h_i)}$ and $P_j^{(1)}$, $P_j^{(2)}$,..., $P_j^{(h_j)}$, respectively. Now suppose $A_{ij} \neq 0$; then there are $r \in P_i^{(l)}$, $s \in P_j^{(m)}$ such that $(r, s) \in \Gamma(A)$. Now we show this implies the existence of edges from $P_i^{(l)}$ to $P_j^{(m+d_{ij})}$ and $P_i^{(l)}$ to $P_j^{(m-d_{ij})}$, $1 \leq m \pm d_{ij} \leq h_j$. Since (r, s) is an edge in $\Gamma(A)$, for all $\lambda, \mu > 0$ there is a path from $P_i^{(l)}$ to $P_j^{(m+d_{ij})}$ of length $\lambda h_i + \mu h_j + d_{ij} + 1$. Consequently, by Lemma 2.4, there is a path of length n from $P_i^{(l)}$ to $P_j^{(m+d_{ij})}$, since $\Gamma(A) = \Gamma^n(A)$. Since there is an edge from $P_i^{(l)}$ to $P_j^{(m+d_{ij})}$, for all $\lambda, \mu > 0$ there is a path of length $\lambda h_i + \mu h_j - d_{ij} + 1$ from $P_i^{(l+1)}$ to $P_j^{(m+1)}$. By Lemma 2.4, there is a path of length n (hence an edge) from $P_i^{(l+1)}$ to $P_j^{(m+1)}$. Similarly we can obtain an edge from $P_i^{(l-1)}$ to $P_j^{(m-1)}$. Our argument shows that if there is an edge from $P_i^{(l)}$ to $P_j^{(m)}$, then there exist edges from

(a)
$$P_i^{(l)}$$
 to $P_j^{(m \pm d_{ij})}$,
(b) $P_i^{(l \pm 1)}$ to $P_j^{(m \pm 1)}$.

This translates to: If $(A_{ij})_{l,m} \neq 0$ then

(a')
$$(A_{ij})_{l, m \pm d_{ij}} \neq 0$$
,
(b') $(A_{ij})_{(l \pm 1), (m \pm 1)} \neq 0$.

By repeating the same argument with the new nonzero entries of A_{ij} , we obtain A_{ij} as a direct sum of matrices of the desired form. By Lemma 2.6, each nonzero block is a positive block. Lemma 2.5 guarantees that the edge (r, s) in $\Gamma(A)$ will not give rise to any edge other than the ones described above. Notice when $h_i = 1$ or $h_j = 1$, then A_{ii} or A_{jj} is a positive matrix. In this case $d_{ij} = \gcd(h_i, h_j) = 1$, and so $A_{ij} \neq 0$ implies $A_{ij} > 0$.

(iii): To show $\Gamma_B(A)$ is transitively closed, suppose $A_{ij} \neq 0$ and $A_{jk} \neq 0$. Then both A_{ij} and A_{jk} must be sums of matrices of the type described in (ii). Therefore, $A_{ii}^{n-2}A_{ij}A_{jk}$ is a nonzero sum of matrices of the type described in (ii). Since a nonzero (u, v) entry in $A_{ii}^{n-2}A_{ij}A_{jk}$ implies a nonzero (u, v) entry in A_{ik} , it follows that $A_{ik} \neq 0$. Hence $\Gamma_B(A)$ is transitively closed.

REMARK. It is possible to obtain similar results about the structure of the Frobenius form without the assumption that $A_{ii} \neq 0$ for all i. However, there are very many cases that need to be described.

Corollary 3.2. Suppose A is a nonnegative matrix and $PAP^{T} =$ $[A_{ij}]_{n \times n}$ is a Frobenius form of A, where P is a permutation matrix. If $A_{ii} \neq 0$ for all i = 1, 2, ..., p, then $\Gamma(A) = \Gamma^2(A)$ if and only if $A_{ii} > 0$ (i = 1, 2, ..., p), A_{ij} is zero or positive for j < i, and the block graph of A is transitively closed.

COROLLARY 3.3. Assume the hypothesis in Corollary 3.2. Then $\Gamma(A) =$ $\Gamma^3(A)$ implies:

- (i) $A_{ii} > 0$ or A_{ii} is a complete cyclic matrix of index 2;
- (ii) for j < i, A_{ij} is either
 - (a) zero,
 - (b) positive,
 - (c) of the form $\begin{bmatrix} 0 & * \\ * & 0 \end{bmatrix}$, or (d) of the form $\begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$;
- (iii) the block graph of A is transitively closed.

REMARK 3.4. It is natural to ask whether the converse of the theorem is true. The answer is in the affirmative if n = 2, as we have seen in Corollary 3.2. However, for $n \ge 3$, further restrictions on the block structure of A must be made. For example, in order to obtain sufficiency for the case n=3, the following must be included along with conditions (i)-(iii) above:

- (iv) If $A_{ij} > 0$, then either class P_i has access to class P_i via a complete class in the block graph, or there exists l, k, l', k' such that $A_{ik}A_{kl}A_{lj}$ is of the form $\begin{bmatrix} 0 & * \\ * & 0 \end{bmatrix}$ and $A_{ik'}A_{k'l'}A_{l'j}$ is of the form $\begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$, where each * represents a positive matrix (possibly rectangular).
- (v) If A_{ij} is of the form $\begin{bmatrix} 0 & * \\ * & 0 \end{bmatrix}$, then for all k, l, either $A_{ik}A_{kl}A_{lj}$ is zero or it is of the same form.
- (vi) If A_{ij} is of the form $\begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$, then for all k, l, either $A_{ik}A_{kl}A_{lj}$ is zero or it is of the same form.

We give an example of a matrix A with $\Gamma(A) = \Gamma^5(A)$ to illustrate the structure described in Theorem 3.1.

Example 3.5. Let

$$A = \begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix},$$

where

$$A_{11} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \qquad A_{22} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

and

$$A_{21} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

We note the following:

- (i) A_{11} , A_{22} are cyclic matrices of index 4, 2, respectively, and $5 \equiv 1 \pmod{h}$, where h = 4 or 2.
- (ii) The distance between any two nonzero consecutive diagonals of A_{21} is 2, which is the gcd of 4 and 2.
- (iii) The block graph of A is as shown in Figure 3, and is transitively closed.

Fig. 3

4. APPLICATIONS

The following is perhaps well known. However, we are not aware of an elementary proof which does not depend upon some other important result.

LEMMA 4.1. Let E be a nonnegative idempotent irreducible matrix. Then rank E = 1, and so $E = xy^T$, x > 0, y > 0, $y^Tx = 1$.

Proof. The spectral radius of E is 1, and by the Perron-Frobenius theorem, 1 is a simple eigenvalue of E. That is, 0 is a simple eigenvalue of 1-E. This implies that the dimension of the null space of $(I-E)^T$ is 1. The rows of E are eigenvectors of $(I-E)^T$ corresponding to eigenvalue 0, since $(I-E)^TE^T=0$. This proves that the dimension of the row space of E is 1. Hence rank E=1, so $E=xy^T$, $x,y\geq 0$. Since E is irreducible, it follows that E>0.

THEOREM 4.2 [2]. Let A be a nonnegative idempotent matrix with no zero rows and no zero columns. Then there exists a permutation matrix P such that

$$PAP^{T} = \begin{pmatrix} x_1 y_1^T & 0 & \cdots & 0 \\ 0 & x_2 y_2^T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_p y_p^T \end{pmatrix}$$

where $x_i, y_i > 0$ and $y_i^T x_i = 1$.

Proof. We know that there exists a permutation matrix P such that

$$PAP^{t} = \begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} & \cdots & A_{pp} \end{pmatrix}.$$

Since there are no zero rows and no zero columns, $A_{11} \neq 0$ and $A_{pp} \neq 0$. Suppose $A_{ii} = 0$ for some $i, 2 \le i \le p-1$. Let k be the largest integer such that $A_{kk} = 0$, $2 \le k \le p-1$. If $A_{lk} = 0$ for all $l = k+1, k+2, \ldots, p$, then the kth column of A is zero, which is not true under our hypothesis. Therefore, $A_{lk} \neq 0$ for some $l = k+1, k+2, \ldots, p$. Then, since $A = A^2$, it follows that

 A_{lk} is positive. For $l \ge k+1$ we have $A_{ll} > 0$ by the choice of k. Since A_{ll} is idempotent and irreducible, by Lemma 4.1, $A_{ll} = x_l y_l^T$, where $y_l^T x_l = 1$ and $x_l > 0$, $y_l > 0$. Then $A = A^2$ yields

$$\begin{split} A_{lj} &= A_{ll} A_{lj} + \sum_{j \leq i < l} A_{li} A_{ij} \\ &= x_l y_l^T A_{lj} + \sum_{j \leq i < l} A_{li} A_{ij}. \end{split}$$

Multiplying this equation on the left by y_l^T , we have $y_l^T(\sum_{j \leq i < l} A_{li} A_{ij}) = 0$. Since $y_l > 0$, this implies $A_{li} A_{ij} = 0$ for all $i = j, j + 1, \ldots, l - 1$. In particular, when i = k, $A_{lk} A_{kj} = 0$ for $j = 1, 2, \ldots, k - 1$. Since $A_{lk} > 0$, this implies $A_{kj} = 0$ for all $j = 1, 2, \ldots, k - 1$. That is, the kth row of A is zero, a contradiction. Therefore, $A_{ii} \neq 0$ for all i. Similarly, the equation $A_{ij} = A_{ii} A_{ij} + A_{ij} A_{jj} + \sum_{j \leq k < i} A_{ik} A_{kj}$ yields $A_{ij} = 0$ for all j < i, since $A_{ii} = x_i y_i^T$ where $y_i^T x_i = 1$.

REMARK 4.3. If A is any matrix, then there exists a permutation matrix P such that

$$PAP^{T} = \begin{pmatrix} J & K & 0 & 0 \\ 0 & 0 & 0 & 0 \\ L & M & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

where J, K have no zero rows in common, and J, L have no zero columns in common. In case A is idempotent, it immediately follows that K = JD, L = CJ, M = CJD, where J is an idempotent matrix with no zero rows and no zero columns. Thus by the above theorem the well-known characterization of any nonnegative idempotent matrix may be obtained.

REMARK 4.4. By applying Theorem 3.1 we can also obtain the well-known characterizations of nonnegative matrices A such that $A = A^n$ [1, 5, 7, 8].

The authors would like to thank the referee for his suggestions and comments.

REFERENCES

- 1 A. Berman, Nonnegative matrices which are equal to their generalized inverse, Linear Algebra Appl. 9:261-265 (1974).
- 2 A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Series on Computer Science and Applied Mathematics, Academic, New York, 1979.
- 3 P. Flor, On groups of nonnegative matrices, Compositio Math. 21:376-382 (1969).
- 4 F. R. Gantmacher, Matrix Theory, Vol. 1, Chelsea, New York, 1959.
- 5 E. Haynsworth and J. R. Wall, Group inverses of certain nonnegative matrices, *Linear Algebra Appl.* 25:271-288 (1979).
- 6 S. K. Jain, E. K. Kwak, and V. K. Goel, Decomposition of nonnegative group-monotone matrices, *Trans. Amer. Math. Soc.* 257, No. 2 (1980).
- S. K. Jain and L. Snyder, Nonnegative λ-monotone matrices, SIAM J. Algebraic Discrete Methods 2:66-76 (1981).
- 8 M. Lewin, Nonnegative matrices generating a finite cyclic group, Linear and Multilinear Algebra 5:91-94 (1977).
- 9 H. Schneider, Theorems on M-splitting of a singular M-matrix which depend on graph structure, Linear Algebra Appl. 58:407-424 (1984).

Received 2 February 1988; final manuscript accepted 23 January 1989