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The purpose of this paper is to study conditions under which the powers of a square matrix A are weak
monotone. Necessary and sufficient conditions under which the product of any two weak monotone
matrices is weak monotone are also obtained. Several examples are given to illustrate the necessity of the
conditions stated.

1. INTRODUCTION

Anm x nmatrix A s called weak monotone (w.m.) if Ax > 0 implies xe R, + N(A).
In other words A is weak monotone if and only if the linear system Ax=5, b>0,
has a nonnegative solution. The importance of the concept of weak monotonicity
can hardly be overemphasized because of its various applications to the problems
requiring nonnegative solutions of linear systems. In general, there are no convenient
methods to test for weak monotonicity of any matrix. Our results infer the weak
monotonicity of a matrix A if some power of A is weak monotone and vice versa.
In particular, if some power of a nonnegative matrix A4 has rank 1, then 4 must be
weak monotone, and for a matrix 4 with index 1, 4" is weak monotone whenever
A is weak monotone provided A4* >0.

2. NOTATION AND DEFINITIONS

R, ={xeR"| x>0}

R(A) ={Ax|xeR"}

N(A) ={xeR"| Ax=0}
A{l} ={XeR"™™| AXA= A}
A" =a member of A{1}

A* =group inverse of A
A = Drazin inverse of A
AT =transpose of A

A = 0 means each entry of 4 is nonnegative.

A singular square matrix A is of index k if k is the smallest positive integer such that
rank(A*) = rank(4***). A nonsingular matrix is said to have index 0. If A is an m x n
matrix of rank r, then A = FG, where F and G are respectively m x rand r x n matrices
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of rank r, is called a full rank factorization of A. Such a factorization is called
nonnegative if both F and G are nonnegative.

If 4, X are n x n matrices such that (1¥) 4**!X = 4% 2) XAX =X, (3) AX = X A,
where k =index A, then X is called the Drazin inverse of 4. The Drazin inverse of
a matrix always exists and is unique. It is denoted by 4. If k = 1, then the Drazin
inverse A is called the group inverse, denoted by 4*. If X € A{1}, i.e., X satisfies
AXA = A, then X is called a {1}-inverse of A. Furthermore, if X > 0 then A is called
{1}-monotone.

An n x n matrix 4 is called monotone if Ax > 0 implies x 2 0. It may be remarked
that if a nonsingular matrix A is weak monotone, then 4 is monotone. Equivalently,

A is monotone if and only if A~! >0.

3. PRELIMINARY RESULTS
We begin with a list of some of the simple results referenced throughout the paper.

3.1. PROPOSITION Let A be any matrix. Under any one of the following conditions,
A is weak monotone.

(i) A= A?
(ii) Az0and rank A=1
(iil) A is {1}-monotone
(iv) A has afull rank factorization A = FG where both F and G are weak monotone
(v) AT is weak monotone.

Proof The proofs of (i)-(iv) follow immediately from the definition of weak
monotonicity. The proof of (v) depends upon Farkas’ Theorem [3, Theorem 1] which
states that for any x€ R(A), there exists ¢ = 0 such that Ac=« if and only if fz >0
whenever A >0 for any row vector f. Now, let a=ATx>0. If AT is not weak
monotone, then there does not exist any nonnegative y such that ATy =a. So by
Farkas’ Theorem, there exists § such that A7 >0, but fa = fATx < 0. Furthermore,
since A4 is weak monotone and A8 > 0, there exists z > 0 such that A87 = 4z. Thus
xTABT = xT Az, a contradiction since x" AT <0 and x"4z>0.

The next proposition is a converse of Proposition 3.1(iv) for nonnegative matrices.

3.2. PROPOSITION Let A be a nonnegative weak monotone matrix. Then there exists
a full rank factorization A = FG such that at least one of the factors F or G is weak
monotone. In case A has a nonnegative full rank factorization, then both F and G are
weak monotone.

The proof is straightforward.
A consequence of Propositions 3.1 and 3.2 is

3.3. PROPOSITION Let A = FG be a nonnegative full rank factorization of A. Then A
is weak monotone if and only if A is {1}-monotone.

Proof By Proposition 3.2, both F and G are weak monotone matrices. We now
show that there exists a nonnegative left inverse of F. Let F, be any left inverse of



617

WEAK MONOTONICITY 225

F. Write F] =[x,x,---x,], where x; denotes the ith column. Since FT is w.m. and
FTx; >0, there exists w;>0 such that F'x;=FTw,. Define F=[ww,---w,]".
Clearly F; is a nonnegative left inverse of F. Similarly, one can show that G has a
nonnegative right inverse G. Then G F is a nonnegative {1}-inverse of 4. Sufficiency
follows from Proposition 3.1.

4. MAIN RESULTS
In this section we study the weak monotonicity of the powers of A.
4.1. LeMMAa Let A be a matrix with index 1.

(a) If A=0 and A" is w.m. for some n>0, then A is w.m.
(b) AA* =0 and A is wm. then A" is wm. for all n>0.

Proof (a) We may assume n > 2. First we show that if A" is w.m., then A"" ! is
also w.m. Now 4" !'x >0 implies A"x > 0. But then A"x = A", t >0, since A" is
w.m. This implies A* 4"x = A* A"t and so 4"~ 'x = 4""'t. Hence if 4" is w.m., then
Ais wm.

(b) We first show that for any y >0, A*y >0 whenever A4* >0 and A4 is w.m.
Assume that A4* >0, y=>0, and A is w.m. Then AA* y >0 so there is some z >0
such that AA*y=Az since 4 is w.m. Then A*AA*y=A*Az and so
A*y=A* Az > 0. Now we will show that if 4"~ is w.m., then 4" is w.m. For this,
suppose A"x > 0. Then 4"x = A"~ '(Ax)=A""'y for some y >0 since A"~ ! is w.m.
Multiplying by A4 * yields

) A" =A"A*)y.
This shows that A" is w.m. since A*y > 0.

4.2. Remark The following example shows that if the hypothesis “A44* >0 is
removed, then A" need not be w.m. whenever 4 is w.m.

4.3. Example Let

1 01

A=]1 0 1

010

and let
10101
A=10[ }
010
01

be a nonnegative full rank factorization. Then
1 -1 1 0 1 0
A* =F(GF)"*.G=| 1 -1 1 and AA* =|0 1 0[#0.
-1 2 -1 1 -1 1
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1
It is easy to show that A is w.m. However, 4% is not w.m. For, if x=| — 1, then
1
1 t, 4+t 41,
A%x=|1], but Ax =A%t =|t, +1t,+t;|and t >0 are not consistent.
2 t, +1,

4.4. Remark Lemma 4.1(a) is not necessarily true if index 4 > 1 as shown by the
following example.

4.5. Example Let

0111
01 1 1
A=
0 0 01
0 0 00
Here rank A4 =2, rank A? =rank A% =1 and so index A =2. Since A% is of rank 1,
0
A% is w.m. However, A4 is not w.m., since for x = —0 , Ax 2 0, but there does not
1

exist any y = 0 such that Ax = Ay.

4.6. LEMMA Let A be a nonnegative weak monotone matrix of index k. If A'**' is
weak monotone, then A' is also monotone for 1= k.

Proof Let A'x>0. Then A'*!x>0. Since A'*! is w.m., there exists y >0 such
that A'*'x = A'*1y. Therefore A9A'*1x=A94'*1y and so A'x = A'y.

4.7. LEeMMA Let A be any nonnegative square matrix of index k with k> 1 and
AAY > 0. Then the weak monotonicity of A' implies that A'*! is weak monotone, for
1=k

Proof Suppose A'*!'x>0. Since A' is w.m., there exists y>0 such that
A'*1x = A'y. This implies A'*!'x = 4'4'(4")®y and so,
@ Al ix = AN (AD* A Yy),

Let t = (A4)* A'~'y. We will show that t > 0. Clearly (4')* 4'A'~'y > 0. Because A'
is w.m., there exists z > 0 such that

(AY* A'4' "y = Az,
From the above relation we get
t= (A A"y = (4Y)* A%z
=(AA4'2=ADAz>0,
proving t >0 and A" 'x= A"t by (2).
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The following lemma is an improvement of Lemma 4.6.

4.8. LEMMA Let A be a nonnegative matrix of index k (k > 1) such that AA > 0.
Then whenever A*~ 1 is weak monotone, A* is also weak monotone.

Proof Suppose A*x >0. This implies A*x=A4*"'y, y>0 and so A*x = A*A9y,
Now since 4* 'A“y>0 and A*"' is w.m., there exists z>0 such that
A" 149y = 4¥~1z and so A*Ay = A*z. Hence A*x = Az.

4.9. COROLLARY Let A be a nonnegative matrix of index k (k > 1) such that A4 2 0.
Then A' is weak monotone if and only if A'** is weak monotone for [ = k.

4.10. THEOREM Let A be a weak monotone matrix such that AA =0 with index
A=k>1. Then A* is weak monotone (and hence A' is weak monotone for all 1 = k).

Proof For k=1 the result follows from Lemma 4.1(b), so we assume k> 1.
Suppose A*x > 0. Then A*x = Ay,, for some y, >0. This implies A*¥x = AAD Ay, =
A*((A“YAy,). Now, since A4y, >0 and A is w.m., we have AAYy, = Ay,, for
some y, = 0. This gives A(A@)y, = (A~ 'Ay,. Because A4y, >0and A is w.m,,
we obtain (49" 1Ay, = (4'“)*~2A4y,. Continuing this process we get a sequence
of nonnegative vectors Yo, ¥;,...,¥x-1 such that (A Ay, = (A9 14y, =
(A9)=24y, =...= A4y, _, >0. Hence A*x = A*t where t = (A9 Ay, = 0.

The following example shows that under the hypothesis of Theorem 4.10, A" need
not be weak monotone for [ <k.

4.11. Example Let

o O O O ©

O O O = = -
S = O O O -
_0 O = - O
- -0 O O O
o O ©O © O ©

0

Then rank A =3, rank 42 =2, rank 4> =1, and 4" = 43/16 >0 and so AA“ >0.
By choosing

Y
- o O O O

*

However, there does not exist a t >0 such that 42x = A%t. Hence 4% is not w.m.
Though it is somewhat messy, one can show that A is a weak monotone matrix.
Note that A% is weak monotone since A> is a nonnegative rank 1 matrix.
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5. MONOTONICITY OF THE PRODUCT

In this section we study the weak monotonicity of the product AB when A4 and B
are given w.m. matrices. As corollaries to the results in this section we may obtain
some of the lemmas discussed in Section 4.

5.1. PROPOSITION Let A and B be weak monotone matrices such that index(4B) =
index(BA)=1, (AB)(AB)* 20 and (BA)(BA)* 0. Then AB and BA are weak
monotone matrices.

Proof Suppose ABx>0. Then ABx=Ay, for some y>0. Now since
(BA)(BA)*y =0 and B is w.m., there exists z > 0 such that BA(BA)* y = Bz and so
BAy=BABz. Since ABx=Ay, it follows that BABx=BABz and therefore
ABx = ABz. Thus AB is weak monotone. By switching the roles of 4 and B we also
obtain BA is weak monotone.

5.2. Remark One may ask here a natural question: Is the converse of Proposition
5.1 true? In other words, if AB and BA are w.m. matrices and (4B)(AB)* >0 and
(BA)(BA)* >0, is it true that 4 and B are weak monotone? We answer this question
in the negative with the following example.

5.3. Example Let A be the matrix as in Example 4.11. Take U = A2 and V = 42, -
Then (UV)UV)* = (4*)(A*)* = AA“ > 0and (VU)(VU)* 20.Also UV = VU = 4*
is w.m.. However, U is not w.m.

The following is a simple fact.

5.4. PROPOSITION Suppose A and B are weak monotone matrices and assume A has
a left inverse (or B has a right inverse). Then AB is weak monotone.

The following is a generalization of Proposition 5.1.

5.5. THEOREM Let A and B be weak monotone matrices such that (AB)(AB)® > 0
and (BA)BA)? 20. Then (AB)* and (BA) are weak monotone matrices, where
k =index(A4B) and | = index(BA). .

Proof Without loss of generality we may assume k > I. Suppose (4B)*x > 0. Since
A is w.m., there exists y > 0 such that

() (AB)x = Ay.
Since (BA)(BA)?y >0 and B is w.m., there exists z > 0 such that
(ii) (BA)BA)?y = Bz. '
By (i), (BA)“'B(AB)x = (BAY(BA)y, and so (BA)®(BA)*Bx = Bz. Multiplying both
sides by ABA yields (AB)**!x = (4B)?z, and so
(AB)'x = (AB)'(4B)*z = (AB)"(((AB)“)*(4B)z).

Let t = ((AB)¥)*(AB)z. We will show ¢ > 0. Let z, = z. Since (AB)(AB)9z, >0 and
A is w.m., there exists z, >0 such that (4B)(AB)%z, = Az,.
Thus we get (4B)“z, = (AB)®Az,. Now since (BA)(BA)¥z, >0 and B is w.m.,
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there exists z; >0 such that (BA)(BA)?¥z, = Bz,. This implies A(BA)Yz, =
A(BA)Bz, = (AB)**'z,, that is, (ABYAz, = (AB)* 'z, Multiplying by ((AB)®)*!
we obtain (4B)?Az, = (AB)Y¥(AB)z,.

Next by starting with z; and using the same procedure, we obtain nonnegative
vectors z; and z, such that (AB)¥z, = (AB)¥Az, and (AB)PAzy = (AB)Y¥(AB)z,.
Thus we get a sequence of nonnegative vectors zy, 2z, 23, - - such that

(AB)¥zo = (AB)"Az,, (AB)YAz, = (AB)¥(AB)z,;
(AB)9z, = (AB)Y?Az,, (ABYVAzy = (AB)Y9(AB)z4;
(AB)¥z, = (AB)?Azs, (ABY9Azs = (AB)¥(AB)zs;

(AB)Yz,., = (AB)9Az;, (ABY9Az; = (ABY¥(AB)z;4 15

Therefore,
(AB)9z, = (AB)¥(AB)z; = (AB)9(AB)*zy =" = (ABY(ABY'z;4 (s=1).

This implies ((ABY®Y(4B)zo = ((ABYY(ABY*'zy, (s2 1). In particular when
s=k—-1,

t=((AB)¥Y(4AB)zo = (ABYY(AB)z30c- 1)
= (AB)(AB)z34-1,2 0.
Hence (AB)x = (AB)‘t where t > 0, and so (4B)* is w.m. Similarly, (BA)' is w.m.

5.6. Remark Even though Theorem 4.10 is a corollary of Theorem 5.5, we chose
to include the proof of Theorem 4.10 because it is somewhat less involved. The
following example shows that with the hypethesis in Theorem 5.6, (AB)' may not be
w.m. if I <k.

5.7. Example Consider the matrix 4 in Example 4.11. Let B= A in Theorem 35.6.
Then A and B are wm, k = index(AB) = index(BA) = index(42)=2, and
(AB)(AB)¥ = (A2)(AH) D = AA¥ 2 0. Similarly, (BA)(BA)“ = 0. However, (AB}~'=
(BA)~! = A* is not w.m.

5.8. Remark Let b bea nonnegative vector. Call a matrix 4 to be b-weak monotone
if Ax>b implies Ax = Ay for some y 2> 0. Clearly, weak monotonicity is the same
as O-weak monotonicity and if 4 is weak monotone, then 4 is b-weak monotone for
all b= 0. It is also interesting to note that if A is b-weak monotone, then for any

1 0 1
¢> 0, however small, A is also eb-weak monotone. However, for A=|0 0 11,
0 00
0
p=|0], it is trivial that A4 is (vacuously) b-weak monotone, but A is not weak
1

monotone. Thus one may ask a natural question: Under what conditions on A or
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b, b-weak monotonicity of A implies the weak monotonicity of A? In this connection
it can be shown thatif be R(A4), b > 0, then A4 is weak monotone whenever 4 is b-weak
monotone. It may be of interest to investigate other conditions or special types of
matrices for which b-weak monotonicity implies weak monotonicity.
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