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ABSTRACT

In order to solve a linear system Ax = b, certain elementary row operations are
performed on A before applying the Gauss-Seidel or Jacobi iterative methods. It is
shown that when A is a nonsingular M-matrix or a singular tridiagonal M-matrix, the
modified method yields considerable improvement in the rate of convergence for the
iterative method. It is also shown that in some cases this method is superior to certain
other modified iterative methods. The performance of this modified method on some
matrices other than M-matrices is also investigated.

1. INTRODUCTION

Given a linear system Ax =b, it is often impractical to employ direct
methods to obtain a solution when A is large and sparse. The use of iterative
methods to solve large sparse systems is certainly not new, and in fact they
date back to Gauss (1823). Iterative methods generate a sequence of approxi-
mate solutions {x*)} to a linear system.

The modified iterative methods that we present in this paper were
introduced by Mokari-Bolhassan and Trick [3). At most n — 1 elementary row
operations are applied to the system Ax = b to obtain an equivalent system
Ax = b, where A is a matrix with its first upper codiagonal zero. Then
standard iterative methods are applied to the modified svstem Ax = b.

Many other authors have studied various methods to accelerate the
convergence of iterative methods. In particular, Milaszewicz [2) suggests that
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if the original iteration matrix T is nonnegative and irreducible, then
performing Gaussian elimination on a selected column of T to make it zero
will improve the convergence of the iteration matrix. We compare our
method with Milaszewicz's method by numerical examples with random
value entries.

2. DEFINITIONS, NOTATION, AND KNOWN RESULTS

For any n X n matrix A, the directed graph T(A) of A is defined to be
the pair (V, E) where V =(1,2,..., n} is the set of vertices and E ={(i,)):a,;
#0, 1<i,j < n}is the set of edges. A path from i, to i, is an ordered tuple
of vertices (i}, iy,...,i,) such that for each k, (i}, i, ,) € E. A directed graph
is said to be strongly connected if for each pair (i, j) of vertices, there is a
path from i to j. The reflexive transitive closure of the graph I'(A) is a graph
denoted by I'(A). It is the smallest reflexive and transitive relation which
includes the relation T(A). The matrix A is said to be irreducible if T'(A) is
strongly connected. A matrix A is called a2 Z-matrix if a,;< 0 for all ¢, j such
that i # j. A Z-taatrix such that each column sum is equal to zero is called a
Q-matrix. Any matrix A can be split in the form A= D — L — U where D is
a diagonal matrix, — L is strictly lower triangular, and — U is strictly upper
triangular. We shall refer to this splitting as the the usual splitting of A. A
matrix A is said to be nonnegative if each entry of A is nonnegative, and is
said to be a positive matrix if each entry is positive. We shall denote this by
A>0and A > 0, respectively. The spectral radius of A is denoted by p(A).

Tueorem 2.1 (Perron-Frobenius).

(a) If A is a positive matrix, then p(A) is a simple eigenvalue of A.

(b) If A is nonnegative and irreducible, then p(A) is a simple eigenvalue
of A. Furthermore, any eigenvalue with the same modulus as p(A) is also
simple, and A has a positive eigenvector x corresponding to the eigenvalue
p(A). Any other positive eigenvector of A is a multiple of x.

TeOREM 2.2.  Let A be a nonnegative matrix. Then:

(a) If ax < Ax for some nonnegative vector x, x # 0, then a < p(A).
(b) If Ax < Bx for some positive vector x, then p(A) < B. Moreover, if A
is irreducible and if
0+ax < Ar < Bx

for some nonnegative vector x, then « < p(A) < B and x is a positive vector.

624



625

CONSISTENT LINEAR SYSTEMS 3

Tueorem 2.3.  Let A be irreducible. If S is the maximum row sum of A
and s is the minimum row sum of A, then s <p(A)<S.

THEOREM 24. Let A=1~ L~ U be a Z-matrix with the usual splitting.
Let T=(I-L)"'U and T, = L + U be the Gauss-Seidel and Jacobi iteration
matrices of A, respectively. Then exactly one of the following holds:

(a) p(T)=p(T) =0,
(b) 0<p(T)<p(T)) <1,
@1 = p(T) = p(T)),
(d 1<p(T)) < p(T).

3. PRELIMINARY RESULTS

Although it is straightforward, we include the proof of the following for
the sake of completeness.

LemMma 3.1, Let A=I-L-Ubea Q-matrix with the usual splitting.
Suppose that T is the Gauss-Seidel iteration matrix definedby T=(1-L)"'U
or the Jacobi iteration matrix defined by T)=L+U. Then p(T)=1.

Proof. Let e=(1,1,...,1)". Then e"A =0, since A is a Q-matrix. This
implies (I — L) = ¢TU and therefore

eT=eT[U(I—L)_l].V

This implies p((U(I - L)~'|T) =] bv Theorem 2.2, and hence p(U(I -
L)"') =1. Since spectrum(U(I-L)~!)= spectrum((I ~ L)~ 'U), we have
p((I-L)"'U)=1. Thus p(T)=1.

It is easy to see that e"(L+U)=¢T, since 4 is a Q-matrix. Hence by
Theorem 2.2, p(LT + UT) = and therefore p(L+U)=1. n

Remark 3.2.  The usual splitting of A is A= D — L — U, where D, -L,
and - U are the diagonal, strictly lower, and strictly upper triangular parts of
A. With the assumption that a;; #0 for all i, let us consider the new matrix
A=D"A=1-D-1L-p-Iy. Clearly the system Ax=b=D"'p js
equivalent to the system Ax = b. Without loss of generality we may assume
A has the splitting of the form A=]— L -y when a;, % 0.
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ReEmaRrk 3.3. Let A =[a,j] be a matrix with the splitting A=1—L - U.
Then multiplication of A by I + S, where

0 —a, 0 .- 0
0 0 —ag 0

S=]: . . . i
0 0 0 _au—ln
0 0 0 0

transforms the first upper codiagonal to zero. Let
E-=(I+S)A==I—L-—SL—(U-—S+SU).

It is easy to see that the strictly upper triangular part of A (that is,
—U+ S —SU) has its first upper codiagonal zero.

Whenever g, 1a,,,,#1fori=12,....n—1,(I—SL - L)~ exists and
hence it is possible to define the Gauss-Seidel iteration matrix for A, namely

T=(I-SL-L)"U-S+SsU).

IfAis tridiagonal, then T = (I - SL - L)~ 'v2
We shall call T the modified Gauss-Seidel iteration matrix.

Remark 34. The first column of the standard Gauss-Seidel iteration
matrix T = (I~ L)7'U is zero, whereas the first two columns of the modified

Gauss-Seidel matrix
T=(I-L-SL)" (U-5-5U)

are zero. Thus we may partition T and T so that

0 To) . [0 T,
T= and T = _ |,
(0 T, (0 Tl)

where T, and T, are (n—1)X(n—1) and (n —2) X (n —2) matrices respec-
tively.
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CONSISTENT LINEAR SYSTEMS 5
In what follows, when A=(a,) is a Z-matrix we shall assume that

a, =1 for all i
The following lemma may be obtained as a special case of Lemma 3.4 in

(5]

Levma 35. Let A be a Z-matrix such that 0<a,,, 6,,,,<] for
i=12,....,n—1 Then T, and T, are irreducible matrices (where T, and T,

are defined as in Remark 3.4).

Proof. We will show that T, is irreducible by showing that (2,3,...,n,2)
is a cycle in I'(T); consequently it is also a cycle in I(T,), so I(T,) is
strongly connected. Since L is a nonnegative nilpotent matrix, p(L) = 0.
Thus

(I‘-L)_I=I+L+L2+L3+ cev g Ln1
Therefore T=(I+ L+ L*+ L3+ -+ + L"" YU and
I(T)=T(L)T(U).

The condition 0 < a,,,,a,,,; implies that (1,2,....n) is a path in ['(U) and
(n,n~1,...,1) is a path in ['(L). Also T(U) C T(T), since

I(T)=T(U)UT(LU)UT(L2U)U - -- UT(L""'U).

In particular, (2,3,...,n) is a path in I'(T,), so we only need to show that
(n,2) is an edge in I'(T). For this note that (n,1) is an edge in I'(L) and
(1,2) is an edge in ['(U). Consequently (n,2) is an edge in I'(T).

Similarly it can be shown that T is irreducible. [ |

Lemma 3.6. Let A be a Z-matrix such that 0<a; ,a,,,,<1 for
i=12,....,n—1 Then p(T)=1 implies p(T)=1. (All matrices considered
here are defined as in Remark 3.4.)

Proof. Clearly p(T) =1 implies p(T,)= 1. Lemma 3.5, T, is irreducible.
By Theorem 2.1 there exists a positive vector w’ such that T\w' = w'. Now
define

w=(To").

wl
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Then clearly Tw = w. Since T, # 0, Tow’ is a positive scalar and hence w is
a positive vector. Consider

Tw=(1-L-SL) " {(U-S+SV)w.
By factoring I — L from the right hand side we get
To=[1-(1-L)7'sL] (1- L) (U =5+ 5U)w
=[1=(1-1)7'st] "' [(1-L) V0~ (1-L) 'sw+(1-L) "'sUw).
Now (I - L)™'Uw = w implies Uw = (I — L)w. Therefore we get
T’w=[1-(1—L)“SL]"[w-(I—L)“Sw+(1—L)“S(1—L)w]
=[1-(-1)"'st] [0 -(1- L) 'sLa]

=[1-a-)7'st] [1-(1- 1) 'sL]w

Thus by Theorem 2.2, p(T) = 1. [ ]

Lemma 3.7, Let A be a Z-matrix such that 0<a;;.1a,.,,<1. Then
pP(T)=p(T)=A if and only if A=1.

Proof. To show necessity, suppose that T and T are partitioned as

follows:
0 To) _ [0 T,
T= and T = ).
(0 T, (0 T, )

First note that p(T)=p(T,)= A. Since T, is irreducible, there exists a
positive vector w’ such that T,w’ = Aw'.
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Let

wt(/\"'Tow’).

wl

Then w is a positive vector and Tw = Aw. Similarly we can obtain a positive
vector v such that v = Ao, since T, is irreducible and o(T))=A.

Consider
v'Tw=0"(I-L-SL) " (U=-$+SU)w
and
v Tw=AvTw.
This implies
eT(I~L—=SL) " {U~=5+SU)w— AvTw =0,
that is,
o"(I-L~SL)"'[(U~$+SU)w-A(I- L-SL)w] =0.

Since

) -- Uo=A(I-L)w, - (1) -
we have

uT(I—L—SL)“[A(I—L)w—sw+suw-A(1-L)w+ASLm] =0,
¢"(I-=L~SL) "' (-Sw+ SUw + ASLw) = 0,
(I-L—SL)"[—sw+A5(1—L)w+ASLw] =0

(2)
by (1)
¢"(I-=L-5L) (- Sw+ASw) =0,

o"(I-L-SL)"'(A~1)Sw=0.
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Since (I - L —SL)~" is a nonnegative lower triangular matrix, we can write
(I-L-sL) '=p+1L,

where D is a positive diagonal matrix and L’ is a nonnegative strictly lower
triangular matrix. Then

o"(I-L~SL) 'Sw=0T(D+L)Sw
=v"DSw + v'L'Sw.
Since DSw # 0 and o7 is a positive vector,
T(I-L-SL) 'Sw=0.

Therefore, by Equation (2), A = ].
Sufficiency follows from Lemma 3.6. [ |

Lemma 3.8. Let A=1— L — U be a Z-matrix such that 0<a;,4,8,,,,<
1, where — L and —U are the strictly lower and strictly upper triangular
parts of A, respectively. Then the standard Jacobi iteration matrix I,=L+U
and the modified Jacobi iteration matrix T-'j =(I-SL)Y"ML+U-S§+SU)
are both irreducible.

Proof. It follows from the condition 0 < 8;;418;,;; that (1,2,...,
n—ln,n-1,...21)is a path in [(L +U). Hence I'(T)) is strongly con-
nected, and so T, is irreducible.

Next we show that T} is an irreducible matrix. Note that

I(T))2T(L+U -5+ 5U)
=I(L)UI(U-S)uT(sv),

where the first line follows from the fact that (I-SL)™! is a nonnegative
matrix with a positive diagonal. Recall that T (L) contains the path (n,
n—1,...,1), and note that ['(SU) contains the edges (1,3),(2,4),....(n — 2, n).
Hence I'(T)) is strongly connected and f] is irreducible. [ |

LEmMma 3.9. LetA=I—L—UbeaZ-nmhixsuchthatO<a”+la,.+,,.<
1 and p(T)=1, where T=(I-L)"'U. Define T(=[(l+e)I—L]"Ufor
€20. Then p(T,)<1/(1+e¢).

630
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Proof. p(T)

=1 implies that there exists a positive vector @ such that
Tw = w. That is, '

Uo=(1-L)w. (3

Consider

w

T, ! 1+e)I-L]"'u .
— — = + —_— -—
W l+€w [( €) w 1

€

= [(1+e)I—L]~I(Uw—[(l+e)I—L]ﬁw)
Lw
-=[(1+e)I—L]_I((I-L)w—w+m), by (3),

=[(1+5)1—L]—1%Lw. (4)

Note that [(1+ €)I - L] 'Lw > 0, but[(1+e)I~ L] 'Lw+0. Therefore

Tw- w<0,
1+e
by (4). Hence
T ! 5
< .
CST7 e (5)
As in T, the first column of T, is zero, and so we may partition
0 T+
T( = (O Tzl ),

and following the methods employed in the

proof of Lemma 3.5, it is easy to
show that T, is a nonnegative irreducible

matrix. Now write

wo)
W=~
@
Then
T's ! b
PLCAS 1+€w Y(s)

631
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Since T is irreducible, by Theorem 2.2 we have. P(T,)<1/(1+¢€). This
together with p(T,) = p( T.) gives us the desired result, ]
4. MAIN RESULTS IN Z-MATRICES

THEOREM 4.1.  Suppose A=I-L~-Uis a Z-matrix such that 0 <
941+18,+1, <1, where ~L and - U gre strictly lower and strictly upper
triangular parts of A respectively. Let T =(1-L)~'U and T=(-L-~

SL)"NU =S+ SU) be the standard and modified Gauss-Seidel iteration
matrices, respectively. Then

@ p(T) < p(T) if AT) <1,
®) p(T)=p(T) if (T)=1,
(© p(T)> p(T) if p(T)> 1.

Proof.  Part (b) follows from Lemma 3.6. Now to prove (a) and (c), first
we note that there exists a positive vector @ such that

Tw=Aw, (6)
where A = p(T). Now consider
T'w=(1—L-SL)°‘(U—s+SU)w
=(1—L-SL)“(1+s)Uw—(1—L—SL)"sw
=(I- L—SL)"'(1+S),\(1—L)w—(I—L—SL)"sm by (6).
Therefore |
To~Tw=(I-L-5L)"!
x[,\(1+3)(1—L)w—sw—(z—L.—SL_)(I—L)“Uw]
=(I—L—SL)“[Aw—ALw+,\Sw—sw—Uw]
=(I—L—SL)_'[/\(I-—L)w+(A—I)Sw—Uw]

=(I-L-5L)"'(A-1)Sw.

632
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Write (I - L—SL)"'= D+ L’ for some positive diagonal matrix D and a
nonnegative strictly lower triangular matrix L’. Then (I - L ~SL) 'Sw =
(D+L)Sw > 0, since DSw > 0. Also, since DSw % 0, (I — L — SL)~'Sw is a
nonzero, nonnegative vector.

If A <1, then Tw — Tw < 0. Therefore

Tw < Aw.

By using the partitioned form of

introduced in Remark 3.4, we get p(T) < A, by Theorem 2.2.
If A>1, then Tw — Tw > 0 but not equal to 0. Hence Tw > Aw, and this

implies T\& > A@, where

Therefore p(T,)> A by Theorem 2.2. Hence p(T)> A. n

REMARKk 4.2, We recall that when the iteration matrix T is convergent,
p(T) < 1. Theorem 4.1 shows that the modified iteration matrix has a faster
convergence rate when the standard iteration matrix is convergent, and the
modified iteration matrix diverges even faster when the standard iteration
matrix is divergent.

At this point one might ask: How much faster is the convergence of the
modified iteration matrix that than of the standard iteration matrix when they
are both convergent?

When A is a Z-matrix which is not tridiagonal, the answer to the above
question seems to depend on the magnitude of p(T). We have tested many
examples with random entries and noted the following:

(a) When p(T)<1 and close to 1, p(T)— p(T) seems to be relatively
small, and hence the improvement seems to be rather slight.

(b) When p(T) <1 and close to 0.5, the difference p(T)— p(T) seems to
be relatively large and the modified method should be preferred over the
standard method.

633
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We present some matrices in Example 4.3 to illustrate observations (a)

and (b) above.

ExampLE 4.3,
(a) Let
1 -02 =01 -04 -02
-0.2 1 -03 =01 -06
A=} -03 -02 1 -01 -06 |=I-L-U,
-0.1 -01 -0.1 1 -0.01

-02 -03 -04 -03 1

where — L and — U are the strictly lower and strictly upper triangular parts
of A respectively. If

T=(1-L)"'U and T=(I-L~SL)"\(U-5+5U),

where S is the first upper codiagonal of —U, then p(T)=0.9611 and

p(T) = 0.9505.
(b) Let
1 —-0.0089 —0.1305 -0.0679 —0.0252
—0.2891 1 -0.4724 -0.2938 —0.3628
A={—0.1424 -0.3383 1 -0.0972 ~0.0290 |
—-0.3454 —0.3384 —0.4843 1 —0.2982

—0.0363 -—-0.1415 -0.3680 —0.1266 1

If T and T are defined as above, then
p(T)=06897 and p(T)=0.5610.

Remark 4.4.  In the examples we tested, it seems that a reduction of the
spectral radius by 0.1 results in an average saving of about six iterations for a
convergence criterion of 0.1 percent accuracy.

In the following theorem, we compare the modified and standard Jacobi
iteration matrices for a Z-matrix A.

THEOREM 45. Let A=I1~L~U be a Z-matrix, where — L and - U
are the strictly lower and strictly upper triangular parts of A. Let I,=L+U
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and T;=(I—-SL) "ML +U—S+SU) be the standard and modified Jacobi
iteration matrices, respectively. Further assume that T, and T, are irreducible

matrices. Then

(a) p(T.',)<p(T,) if p(T))<1,
®) §T)> p(T)) if p(T))> 1,
(c) p(T)) = P(T)) if p(T))=1.

Proof. Since T, is irreducible, by Theorem 2.1 there exists a positive
vector w such that Tjw = Aw, where A = p(T)). This implies

(L+ U)o = Ao (7
Now consider
Tiw=-Tjw=(I-SL) '[L+U=S+SU~(I-SL)(L+U)]w

=(I-SL)"'[~S+SU+SL? + SLU Jw
=(I-SL)7'S[-I1+U+L*+ LU)w
=(I-SL)7'S[-1+U+AL}w  by(7)
=(I-SL)'$(-w+ Ao~ Lo+ ALw)
=(I1-SL)7's(I1+L)(A - 1)w. (8)

If p(T)) <1, then fw<p(T,)w by (8), and so, by using Theorem 2.2, we

obtain p(fj) <p(T)). )
Similarly we can get p(T)) > p(T)) if p(T;) > 1, and (c) also follows from

Theorem 2.2. [ |

CoRroLLARY 4.6. Let A=1—~L~U, T],fj be as defined in Theorem 4.5.
Replace “T), T, are irreducible matrices” by the condition “0 < 4;i018;4; <
1.” Then the conclusion of Theorem 4.5 holds.

The proof follows from Lemma 3.8.
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S. FURTHER RESULTS ON Z-MATRICES

In this section we consider Z-matrices A such that p(T) =1, where T is
the Gauss-Seidel iteration matrix or Jacobi iteration matrix. In particular, we
focus our attention on Q-matrices.

We have seen in Lemma 3.1 that when A is a Q-matrix, both the
Gauss-Seidel and Jacobi iteration matrices have spectral radius equal to 1. In
this case the iteration matrix T is semiconvergent if and only if p(T)=1 is
the only eigenvalue of T with modulus 1 and the Jordan blocks associated
with the eigenvalue 1 are all 1x 1 matrices [1]. In Lemma 3.6 and Theorem
4.5, we have that p(T) =1 implies p(T)=1, where T and T are either the
standard and modified Gauss-Seidel iteration matrices or the standard and
modified Jacobi iteration matrices respectively. In such cases the rate of
convergence of the iteration matrix is determined by the second largest
modulus of the eigenvalues. We call the second largest modulus the subdom-
inant eigenvalue of the iteration matrix. Let

¥(T) = max{|Al:A € spectrum(T), A#1}.

We provide the following example to show that when p(T) = 1, the modified
iterative method may not always be faster than the standard iterative method.

ExampLE 5.1. Let

1 -02 o ~0.1
A=|=05 1 -099% -o06
0 -08 1 -03 |
=05 0  -0001

We note the following facts:

(a) A is a Q-matrix, and hence 4 is singular.

(b) spectrum(T) = {0, 1, —0.025+0.1713i, —0.025-0.1713i}, where T =
(I-L)"'vu. - '

(¢) spectrum(T)={0,0, 1, —0.3980} where T=(1-L-sL)- Ww-s+
SU).

(d) ¥(T)=0.1731 and y(T') = 0.3980.

(e) The matrix A satisfies the hypothesis of Theorem 4.1, but T fails to
give a better convergence rate than T.

REMARK 5.2. As we have seen in Example 5.1, in some cases the
modified method applied to singular Z-matrices may fail to give a faster

636
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convergence rate than the standard method. However, when A is a tridiago-
nal Q-matrix, the modified Gauss-Seidel method seems to increase the
convergence rate of the iteration matrix dramatically, as evidenced by the
many examples we tested with random entries, We have been able to

establish only partial results confirming this.
This task is made more difficult by the limited availability of research

material on the subdominant eigenvalue of a nonnegative matrix.

LEMMA 53. Let A=1-L—Ube an irreducible tridiagonal Q-matrix of
order n> 2 with the usual splitting. Let T=(1-L)~'U, and define T, =
[A+I- L] for some €30, Then there exists €,>0 such that

P(T, )= T). Furthermore YT) > p(T)) for all € > ¢,

Proof. Since A is a Q-matrix, p(T)=1. Therefore by Lemma 3.9,
P(T)<1/(1+¢€) and so lim A(T)=0 as € >, It is well known that the
characteristic polynomial is a continuous function of the entries of the matrix,
and so p(T,) is a continuous function of €. Therefore, as shown by the graph
of p(T,) (Figure 1), there exists €9 > 0 such that ¥(T) > p(T,) for all € > €
and equality holds when ¢ = €o- -

Levmma 54, Suppose A is gs defined in Lemma 5.3, and let
T.=[(1+€)I-L]"'U and T=[+e)1-UL-L] 'V

Then p(T,) < p(T,).

f(T*)/

L)

O T ?

637
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Proof. Since T, is irreducible, there exists a positive vector w such that
T, = o(T))w. That is,

Uo=[(1+¢€)I - L]wp(T,). (9)
Now consider
Tw-To= [(1+e)1—UL—L]"U%—[(He)l—L]"Uw

=[(1+e)1-UuL-L]!

x{U% = [(1+€)~ UL~ L][(1+ €)1~ L]™'Uw)
=[(1+e)1-UL-L)"!

X{U[(1+ €)1 - L]o(T,)w ~ Vo + ULp(T, ) o) by (9)
=[(1+e)I-UL —L]“[U(1+e)p(T(_)w—Uw]
=[(1+e)1—UL-L]“[(1+e)p(n)—1]Uw.

Since p(T,)<1/(1+¢€) by Lemma 3.9, we get T.w <T,w. So this yields
o(T,) < o(T,), by Theorem 2.2. : ' n

Revark 55. By using Lemma 5.3 and Lemma 5.4 we shall establish
p(7—")<p(T¢)< YT) for all € > €, Testing of numerous examples have
shown that the inequality HT)< p(T), forall € > €0, holds true in general,
but a mathematical proof of this claim is still an open problem. We give an
example of a tridiagonal Q-matrix below to illustrate the effectiveness of the
modified method applied to Gauss-Seidel iteration matrix. All examples we
tested showed a relatively large decrease in the subdominant eigenvalue, and
therefore a significant improvement in the convergence rate by using the
modified iteration matrix.
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ExampLE 56. Let

1 -092 ¢ 0 0 0
-1 1 -014 0 0 0
0 -008 1 071 0 0
A=l o o -086 1 -002 of|=I-L-U
0 0 0 -029 1 -1
0 o 0 0 -098 1

be a Q-matrix. Then y(T)=09451 and y(T)=0.0956, where T =
(I-L)y"'Wand T=(I-L-UL)"'U2

6. COMPARISON WITH ANOTHER METHOD

In this section we discuss miscellaneous results related to the modified
iterative method. First we state the following theorem by Milaszewicz [2]
and compare the modified method with his method by providing Example
6.2. Notice that we chose the modified Jacobi iteration matrix for this
comparison so that it satisfies the hypothesis of Theorem 6.1.

Tueorem 6.1 (Milaszewicz [2]). Let T be a nonnegative irreducible
matrix such that t,, =0 for all i, 1<i<n. Let k be an arbitrary integer
between 1 and n, and S be the matrix whose only nonvanishing terms belong
to its kth column and coincide with the corresponding ones in T. Set
T,=ST+T~S If p(T)<1, then p(T,) < p(T).

ExampLE 6.2. Let

1 -0.1 -02 0 -03 -05
-02 1 ~03 0 -04 -0.1
) -0.3 1 -06 -02 0 |_,_,_
A -02 -03 0 1 01 -o3|=I-L-U
0 -03 -02 =01 1 -02
-02 -03 o0 -03 -0.1 1

Then p(T;) = 0.9530, p( T,)=0.9371, and p( T,.)=0.9451, where

Ti=L+U.  T=(I-SL)"'(L+U-5+50V)
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are as defined in Remark 3.3, and T,, is as defined in Theorem 6.1. Note that

o(T)) < p(T,).
Next we present an interesting theorem which contains some results on

the modified method applied to a special type of matrix:

1 a 0 0 o0 0 o0
-b 1 a 0 0 0 o

0 -b 1 a 0 0 o

. . .. . (10)
0 o o0 0 --- =p 1 a

0 0 o0 o0 --- 0 -b 1

THEOREM 6.3. Let A=1~L ~U be a matrix of the form (10) such that
a, b are positive scalars with a <1 and b < 1. Assume p(T) < a(l+ b), where
T=(~L)"'U. Then for T =(I-L~UL)"'U2, o(T)< p(T). (Indeed, it
suffices to assume that a <1 and ab <1.)

Proof. Using the series expansion of (I~ L)™' and (I — L — UL)~", one
can show that

0 1 0 0 0 0 o
0 b 1 0 0 0 0
0 b2 1 0 0 0
T=(I-L)"'U=-a . '
0 b prmd pe- b b o1
O bn-—l bn—2 bn—:} b.’l b'Z b
and
T=(1-L-UL) 'v?
0 0 1 0 0 0 0 0
0 0 d 1 0 0 0 0
0 0 d? 1 0 0 0
az . . - - .
==, ) . ) e
0 0 dn—3 d"_4 . . . d 1
0 0 g2 gr-3 . . . d? d
0 0 bd"~2%2 pgr-3 . . . bd?® bd

640



641

CONSISTENT LINEAR SYSTEMS 19

where ¢ =1+ ab and d =b /c. Now we partition T and T so that

0 T, . a*[o T,
T=-ag and T=— -,
0 T clo T

where T, and T, are (n —1)X(n — 1) matrices. Since T, is irreducible by
Theorem 2.1, there exists a positive vector x such that T\x = Ax, where
A=p(T,). Now p(T) = ap(T,) < a(1+ b) implies A <1+ b. Thus we get

b 1 0 0 0 0
b2 b 1 0 0o off o
. . X, X
: T3l <(1+b)|*s
bn—2 bn-—3 bn—4 - b2 b 1 ;n ;n
bn-—l bn—2 bn—:i bs bz b
This yields n — 1 inequalities:
(i) br, +x, < (1+b)x,,
(i) ble+bx2+13<(l+b)x2,

(i._)) b "2z, + b " g, 4 - +br,_ +zx,<(1+b)x,_,.

Hence it follows that

N2xy2> - >x, 1 >x,.
That is, the components of the vector x are in decreasing order. Now

consider

a? _ a,
?T,x -aAx = ;(aT,x = cTx).
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We will show that aT\x — ¢T,x < 0. Let y = aT\x — cT\x. That s,

0 d 1 6o 0o --- 0 0 <
0 d? d 10 -~ 0 0 x;
. . . . iy
yza . . . . . . .

T B N |
0 d® gt . gt g ("
0 bd"%* bd"~%® - . - bd® bd

b 1 0 0 - 0 o)/

b? b 1 0 - 0 0ffx

. . . . . . x,

I . ) ) ) L

bn-z bn—s bn—4 bz b 1 X,-2
bn—l bn—2 bu-s b:} bz b X,

This yields n — 1 equations,
Y= (adx, — cbx,) +(ax, ~ cx,),
y2=(ad2x2—cb2x,)+(ad13—cbx2)+(ax4—cx3),

Yy = (ad’x, —cb3x1)+(ad2x3—cb212)+(adx4—cbx3)+(axs—cx4),

Yoz =(ad" 2z, - cb" 2x, )+ (ad"3x, — b, )+ -
+(adx, - cbx,_\)—cx,,
Yn-1 =byn—2‘
Since a <1 and ¢>1, we have a<c"™*! for all r=12,.... This implies
alb/c) < cb” and hence ad" < cb" for all r=1,2,... . Therefore y, <0 for
all i, since x;>x,> -+- > x,. This yields

aT\x <cTyx = cAx.

By Theorem 2.2, we have (a®/¢c)p(T,) < aA. This implies that p(T') < p(T).
|
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CoroLiary 6.4. If b <1, then a necessary condition for the hypothesis of
Theorem 6.3 to hold is that b < (V5 — 1) /2.

Proof. Consider the series

b(1-b""1)

- (11)

A L e Y LA TR X S

If b>(¥5 -1)/2, then b2~b—1>0 and hence b /(1-b)> 1+ b. Now
for b<1,

b
T1-b

and so by (11)

P+ b" 2+ b3 o 4 b2+ b> b+,

Therefore the minimum row sum for T, is b+1, and by Theorem 2.3,
p(T)>1+b. ]

We have found some examples of matrices of the type (10) where the
modified method converges quite fast even though the standard method
diverges. Such examples are very encouraging, because the modified method
might be applied to solve linear systems even when the standard Gauss-Seidel
and Jacobi methods fail to give convergence.
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