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Nonnegative definite 0-1 matrices are shown to have a Cholesky factorization with the factors being 0-1
matrices. Conditions are derived for the existence of a “Cholesky™ factorization of symmetric Boolean
matrices. This condition is related to the structure of the graph associated with the matrix.

1. INTRODUCTION

Matrix factorizations are a paradigm for matrix theory and applied linear algebra
and are intrinsic to many (perhaps most) important numerical algorithms in use
today. Gilbert Strang [6] provides a nice summary of the basic factorizations in the
interleaf of his linear algebra text. These basic factorizations now appear in nearly all
of the recently published books in matrix theory and linear algebra.

Matrices with {0,1} entries have been of interest in various contexts. See for
example [1]. In this paper we investigate the possibilty of finding Cholesky factor-
izations for 0-1 matrices with ordinary arithmetic and with Boolean arithmetic. This
work was initiated when we noted that with some slight modifications the proof of
the existence of the Cholesky factorization in (5] leads to a proof for nonnegative
definite 0-1 matrices. This prompted us then to also seek an analogue for Boolean
matrices.

At several points we find it convenient to make use of some Matlab notaion. In
particular tril(A) for the lower triangular part of 4 and ones(n,n) for an n by n
matrix of all ones.

1.1 0-1 Matrices

THEOREM 1 If A is a nonnegative definite 0-1 matrix, then A has Cholesky facto-
rization A = LLT, where L is a lower triangular 0-1 matrix.

Proof Recall that if 4 is any nonnegative definite matrix, then the determinant of
any principal submatrix of 4 is nonnegative. A consequence of this is that if a; =0,
then the i column and the i row of 4 are all zeros.

Assume that A is of order n. The proof is by induction on n. For n = 1 the result is
obvious. Assume that every nonnegative definite 0-1 matrix of order less than n ha; a
aynyy «

Cholesky factorization with the factors being 0-1 matrices. Let 4 = 4
1
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194 S. K. JAIN AND L. E. SNYDER

where A, is of order n — 1 and o’ = [ap a3 ... aia). First let us consider the case
where a;; =0. Then as stated above it follows that ol = [0...0]. Hence

A= {(0) /(1) } with 4, being nonnegative definite. Hence by the induction hypothesis
1

. . . 0 01/0 O
_ T 1 me _
A4, = L L| with L; a lower triangular 0-1 matrix. Thus 4 = [0 L,] [O Llr}

I o } Let B= A, —aa’, then B is
& Al
nonnegative definite. This follows from the fact that B is the Schur complement of

a nonnegative definite matrix (see e.g. [2]). To see this directly, let y be any (n — 1)

Now suppose that a;; =1,ie, 4= [

T
vector and x = [ i y]. Then

1 T _ T
A
a A y

T T
[-o'y y][~aaT+A1y]

= —yTaaTy + yT A1y = y7(41 — ™ )y = y" By,

so B is nonnegative definite. Also we’ll see that B is a 0-1 matrix. Note that

bi-l,j—l = a;j — o1 Q-1 = Qij — A djt- So, if a;j = 1, then b,-_l’j,| =0 or 1. Suppose
‘ apnr an ay

a;; = 0 and a;a; = 1, then consider the principal submatrix | an @i & of A
7 j p p J

1 1 1 aj  a; aj
which would be |1 1 0}, and which has determinant equal to ~1, a contra-
1 01

diction. Consequently if a;; = 0, then aja; = 0 and thus b; = 0.
Since B is a nonnegative definite 0-1 matrix of order (n— 1), by the induction

hypothesis there is a lower triangular 0-1 matrix L, with B = LiLT = 4, — aa’.

. I 0 1 of .
That is, 4, = L,LT + aa”, hence 4 :[ } } This completes the
L= A Taa a L0 LT P

induction proof.

The next theorem leads to a characterization of the structure of nonnegative
definite 0-1 matrices.

THEOREM 2 If A is an irreducible, nonnegative definite 0-1 matrix of order n, then
A = ones(n,n).

Proof Suppose that a;; = 0. Since 4 is irreducible, there is a path from i to j in the
graph T'(4). Without loss of generality, we may assume that i = 1 and that the path

1 10
is given by the vertices {1,2,...,/}. In this case the matrix | 1 1 1] is a leading
0 1 1

principal submatrix of 4 and has determinant —1. It follows that every entry of 4
must be equal to one. |
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FACTORING 0-1 MATRICES 195

Note that it follows from this theorem that the graph associated with an
irreducible, nonnegative definite 0-1 matrix is a complete graph. For an arbitrary
nonnegative definite 0-1 matrix 4 we can find a permutation matrix P so that the
Frobenius normal form PAPT is a direct sum of irreducible matrices. Hence we have
the following theorem.

THEOREM 3 If A is any nonnegative definite 0-1 matrix, then A is cogredient to a
direct sum of matrices ones(k;, k;) and possibly a zero matrix.

As a consequence of Theorem 3 we have the following.

COROLLARY 4 For any n > 1, the only n x n positive definite 0-1 matrix is the
identity matrix.

Theorem 3 enables us to develop the following algorithm which finds the
Cholesky factorization for a nonnegative definite 0-1 matrix 4.

INPUT A4, n x n nonnegative definite 0-1 matrix
OUTPUT L, n x n lower triangular 0-1 matrix such that 4 = LL”

/ /initializations
fori=1ton
d(i) = A(i, i)
forj=1ton
L(i,j)=0
end
//
fori=1ton
if (d(i) = 1) then
L(i,i)=1

fork=i+1lton
if (A(k,i) = 1) then
L(k,i) =1
dk)=0
end
end
end
end

2. BOOLEAN MATRICES

We now turn our attention to 0-1 matrices using Boolean arithmetic which we’ll refer
to as Boolean matrices.
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196 S. K. JAIN AND L. E. SNYDER

The classical definition for a symmetric matrix 4 to be positive definite is that
xTAx > 0 for all x # 0. For an n x n symmetric Boolean matrix 4 we will say that 4
is positive definite provided that e/ A¢; > 0, equivalently, a; >0, for i=1,2,...,n
where ¢; denotes the vector with 1 in the ith entry and zeros elsewhere. With Boolean
arithmetic this would of course imply that x”Ax > 0 for all x # 0.

A symmetric Boolean matrix is said to have a Cholesky factorization if there Is a
lower triangular Boolean matrix L such that 4 = LLT.

First we give an example of a positive definite Boolean matrix which has no
Cholesky factorization.

Example 5 Llet A = . It can be shown by exhaustively checking

—_— —
—_— — —
—_— -
——— O

0
all the possibilities that 4 # LLT for any lower triangular Boolean matrix L.

Remark 6 Let A be an n x n positive definite Boolean matrix and suppose
A= LL", where L is a lower triangular Boolean matrix. Then some diagonal entry
of L can be either 0 or | unless A = I, in which case L = I.

Proof Let L =[l;;] and assume A # I. Let ip = max{i: 1 <i<n, E};‘l Ip =1}

Then iy > 2 and if iy < n, then we would have 4 = [’g 3], so the problem is
reduced to considering A. Without loss of generality, we can assume that
Zz;ll I« = 1. Hence changing [,, to zero still yields 4 = LLT. [ |

Note that for

1
A=|[1 1 1| =11
011 0

it is possible to change /33 = 0, but changing 5, =0 does not work. That is,

1 0 0yt 1 0O 1 10
1 0 0(j0 O 1|1=]1 1 Of#A4
0 1 t]]0 01 0 0 1

Since factorization of A # [ is not unique whenever it exits, we will characterize
those matrices which allow a factorization of a particular form. That is, we consider
the case where the positive definite Boolean matrix 4 can be factored as 4 = LL7,
with L equal to the lower triangular part of 4 or in Matlab notation, L = tril(4).
First we need some terminology and definitions.

Let i,j, and k denote vertices in the graph I'(4) associated with the matrix 4.

DEFINITION We say that a vertex i of the graph I'(4) is adjacent to the vertex j if
a; = 1.

DEFINITION We say that the graph T'(4) is partially transitive if for every 7,j, k with
i < j < k,jis adjacent to k whenever i is adjacent to both j and k.
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FACTORING 0-1 MATRICES 197

The graph for the matrix 4 in example 5 is |——2

3—4

This graph is not partially transitive since 2 and 3 are both adjacent to 1 but 2 is not
adjacent to 3, and partial transitivity of the graph is what is needed in order to be
able to factor A as the product of its lower triangular part and its upper triangular
part.

TueorReM 7 Let A be a positive definite Boolean matrix. Then A has a Cholesky
factorization of the form A = LLT with L = tril(A) if and only if the graph I'(4) as-
sociated with the matrix is partially transitive.

Proof Assume that 4 = LLT with L = tril(4). If i <j <k and @; = l,a; = 1,
then ag; = Y 0| lkmbim = S i Gkmm > diaj; = 1. Hence T'(A4) is partially transi-
tive.

Now assume I'(4) is partially transitive. We intend to show that for each pair
(k,j) with j < k,

J
agj = Zakmajm. (1)
m=1

If ax; = 0 then partial transitivity implies that ggma;m = 0 for all m < j. Hence the
previous summation is also zero. If a; = 1 then the j* term of the summation is one.
Thus in either case we have (1). [ ]

There are some other results in the literature which establish relationships
between existence of certain paths in the graph I'(4) and the LU factorization of
A. For example, see [3] and [4].

Next we consider an example where A has a factorization 4 = L,LIT with L; being
a lower triangular matrix but L; # tril(A4).

1 1010 1 0 000
1 1 110 1 1.0 00
Example 8 letA=10 1 1 0 1|andletZL;=|0 1 1 0 O
11010 1 0010
001 01 0 01 01

Then A= L,L7, but 4 LLT with L = tril(A) since the graph I'(4) is not
partially transitive. The graph is the following

1 2
[~

This graph fails to be partially transitive since 3 and 4 are not adjacent. However if
we permute the vertices to get the following graph
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1 /

4
then we obtain a graph that is partially transitive. The corresponding Boolean matrix
is B = PAPT for some permutation matrix P and B can be factored as B = LLT with
L = tril(B). This example and many others led us to consider the possibility that a
Boolean matarix 4 has a factorization as 4 = LILIT, for some lower triangular
Boolean matrix L, if and only if there is a permutation matrix P such that I'(B) is
partially transitive for B = PAPT. This is true for matrices of order less than or equal
to 4. However as the following example shows, a matrix 4 can have a factorization

and yet no permutation of the vertices of the graph I'(4) will yield a graph which is
partially transitive.

5 3 2

1 0000 1 1 0 0 1
1 1 000 I 11 0 1
Example 9 Let Ly=10 1 1 0 0 and 4=|0 1 1 1 0} = L,LIT.
00110 001 11
1 00 1 1 1 1.0 1 1
The graph I'(A4) is as follows:
1 2 3
5 4

Note (by Remark 6) that in each of examples 8 and 9, another Cholesky factoriza-
tion of the respective matrices 4 is obtained by setting the (5,5) entry of L, to 0.

We conclude this paper with some remaining questions on the factorization of
Boolean matrices. Suppose 4 = L LT and L, # tril(4). Find conditions on 4 such
that for some permutation matrix P, PAP” = LLT where L = tril( PAPT). Also find
conditions on A such that B = PAPT is factorable as a product of a lower triangular
matrix L with its transpose, L not necessarily equal to tril(B).
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