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ABSTRACT

If A is a boolean matrix, then the weighted Moore-Penrose inverse of A (with
respect to the given matrices M, N ) is a matrix G which satisfies AGA = A,
GAG = G, and that MAG and GAN are symmetric. Under certain conditions on
M, N it is shown that the weighted Moore-Penrose inverse exists if and only if
ANATMA = A, in which case the inverse is NTATMT. When M, N are identity
matrices, this reduces to the well-known result that the Moore-Penrose inverse of a
boolean matrix, when it exists, must be A”. © Elsevier Science Inc., 1997
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1. INTRODUCTION

The binary boolean algebra & consists of the set {0, 1} equipped with the
operations of addition and multiplication defined as follows:

+ l 0 1 l 0 1
010 1 010 0
1 1 110 1

By a boolean matrix we mean a matrix over &. We confine our attention to
boolean matrices. The operations of matrix addition, scalar multiplication, and
matrix multiplication are defined in the usual way. For example, if

0 1 1 0
A=11 0 11| B=1]1 1 0},
0o 0 1 1
then
0o 1 1 1 1 1
A+B=1J1 1 1 and AB=|(0 1 1]}
0 1 1 0o 1 1

The transpose of the matrix A is denoted by A”. The identity matrix of
the appropriate order is denoted by I. For matrices A, B of the same order,
A > B means a;; > b;; for all i, j (with the natural convention that 1 > 0).
For basic properties of boolean matrices we refer to [2].

DEerFINITION 1. Let A, M, N be matrices of order m X n, m X m, and
n X n respectively. The weighted Moore-Penrose inverse of A (with respect
to M, N, denoted by Aj; y) is defined to be an n X m matrix G satisfying

(i) AGA = A,

(ii) GAG = G,
(iii) (MAG)" = MAG,
(iv) (GAN)" = GAN.

In case M, N are identity matrices, then the matrix G satisfying ()—(v) is
simply the Moore-Penrose inverse (denoted by A*) of A.
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MOORE-PENROSE INVERSE 269

It is well known that if A is a boolean matrix then A admits a
Moore-Penrose inverse if and only if AA'A = A, in which case A" is the
Moore-Penrose inverse; see for exeunple, [5]. In the next result we present
several characterizations of matrices admitting the Moore-Penrose inverse.
Many of these characterizations are known, but the formulation of the result
perhaps has some novelty. We will indicate a proof of Theorem 1.1 in Section
2, where we discuss the more general case of a weighted Moore-Penrose
inverse.

THEOREM 1.1. Let A be an m X n matrix. Then the following assertions
are equivalent:

(i) The Moore-Penrose inverse of A exists.
(ii) The Moore-Penrose inverse of A exists and equals AT
(i) AATA = A.
(iv) AATA < A.
(v) Any two rows of A are either identical or disjoint (i.e., there is no
column with a 1 in both the rows).
(vi) Any two columns of A are either identical or disjoint.
(vii) The number of ones in any 2 X 2 submatrix of A is not 3.
(viii) Any 2 X 2 submatrix of A admits a Moore-Penrose inverse.
(ix) There exist permutation matrices, P, Q such that

.

], 0 0 0
PAQ= |
0O 0 e ], 0
(0 0 - 0 0]

where ], ..., ], are matrices (not necessarily square) of all ones.
(x) There exist permutation matrices P, Q such that
_ |1 C
FaQ = [D DC]’

where C, D satisfy cC" <1, D'D <L A
(xi) There exists a matrix G such that GAAT = AT and ATAG = A.

The main purpose of the present paper is to generalize some aspects of
Theorem 1.1 to the weighted case. The proof technique is new and may be
used to obtain results for matrices over more general structures. Thus most of
our statements are valid for matrices over a distributive lattice, whereas some
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require the structure of a completely ordered set. Such generalizations will be
clear from the proofs. However, we have chosen to present the results only in
the setting of binary boolean matrices. In the next section we consider the
question of the existence of a weighted Moore-Penrose inverse and give a
formula for it when it exists.

2. THE MAIN RESULT

We begin by showing that under some conditions on M, N, the inverse
Aj n» when it exists, is unique. We denote the row space of the matrix A by
H(A), and the column space by & A).

THEOREM 2.1. Let A, M, N be matrices of order m X n, m X m, and
n X n respectively, and suppose A},  exists. Further suppose

R(A) =R(MA), #(A) = €(AN),
i.e., there exist matrices X, Y such that

XMA = A, ANY = A.
Then

(a) ANTAT = ANAT, ATMTA = ATMA,;
(b) Ay y is unique.

Proof. (a) Let G = Ay y exist. Then
ANTAT = ANTATGTAT  (since AGA = A)
= AGANA” (since GAN is symmetric)
= ANAT (since AGA = A).

The proof of the remaining part of (a) is similar to the above.
(b): Let, if possible, G|, G, be two candidates for Ay . Then

G, AN = G, AG, AN (since A = AG, A)
= G,ANTATG] (since G, AN is symmetric)
= G,ANATG]  [using (a)]
= NTATGTATG] (since G, AN is symmetric)
= NTATG] (since AG,A = A)
= G, AN (since G, AN is symmetric).
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Thus G, ANY = G, ANY, and hence G A = G, A (since ANY = A). It
follows that G, AG, = G, AG, and therefore

G, = G, AC,. (1)
Now
MAG, = MAG, AG, (since A = AG, A)

= GIAT™M"AC, (since MAG, is symmetric)

= GIATMAG, [using (a)]

=GIATCTA™™MT (since MAG, is symmetric)

=GiA™™MT (since AG A = A)

= MAG, (since MAG, is symmetric).

It follows that XMAG, = XMAG, and hence AG, = AG, (since XMA = A).
Therefore G, AG, = G, AG,, and thus

G, AG, = G,. (2)
It follows from (1), (2) that G, = G,, and the proof is complete. [ |

EXAMPLE. Let

[ 10 1o
A‘[o 0}’ < [1 0]’ G [o 0]'

Take M = I, and N to be the 2 X 2 zero matrix. Then it can be verified that
both G|, G, satisfy all conditions in Definition 1, and therefore the weighted
Moore-Penrose inverse is not unique in this example. Observe that here the
condition of Theorem 2.1 is not satisfied.

The next result will be used in the sequel.
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LEMMA L. Let A be an m X n matrix. Then A < AA'A.

Proof. Let B = AA'A. We must show that «,, < b, for all i, j. This is
obvious if a,; = 0. Now assume that a,; = 1. We have

n mn

bi, = Z Zaikalkalj' (3)

k=11=1

If we set k =j | =i, then ayaya, = a;; = a,. It follows from (3) that

h,.j = 1, and the proof is complete. ]

The following is the main result of this section.

THEOREM 2.2. Let A, M, N be matrices of order m X n, m X m, and
n X n respectively, and suppose

(a) F#(A) =R(MA), #(A) = F(AN),
b)) M>>I, N> L

Then the following assertions are equivalent:

(i) Ay \ exists.

(ii)- Any one of the following holds':
(1) ANATMA = A,
(2) ANTATMA = A,
(3) ANATMTA = A,
(4) ANTATM'A = A,
and thus Ay, \ = NTATMT.

(iii) Any two rows of A are either identical or disjoint, and ANAT = AAT,
ATMA = ATA.

(iv) Any two columns of A are either identical or disjoint, and ANAT =
AAT, ATMA = ATA.

Proof. (i) = (ii): Suppose G = A}, y exists. Since the number of boolean
matrices of a given order is finite, there exist integers k > 1, s > 1 such that

k+s

(ANATMT)* = (ANATMT)" ™", (4)

"' The equalities in (1). (2), (3), (4) can be replaced by <.
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Without loss we can assume s > 1, for if ¥ = 1, then (4) clearly holds for
s = 2 as well. Now, left multiplying Equation (4) by G and then using the
fact that GAN s symmetric, we get

NTATGTATMT(ANA™MT)" ' = NTATGTATMT(ANATMT)' '

Left multiply the above equation by Y7 and then use AGA = A, ANY = A
to get

ATMT(ANA™MTY ! = ATMT(ANATMT)H

Left multiply the above equation by GT and then use the facts that MAG is
symmetric and that AGA = A to get

M(ANATMT) ™' = M(ANATMTY '
Finally, left multiply the above equation by X and use XMA = A to get
(ANATMT)' ™' = (ANATMTY '

Continuing this way, we may assume, k = 1, without loss of generality, and
therefore,

ANATMT = (ANATMT)*" ",

Starting with the above equation, we get the following chain of implications:

= GANA™M" = GAN ATM'( ANA™MT)’
= NTA'G'A"M" = NT ATG'A" MT( ANA'MT)’
= NTATMT = NTATMT( ANATMT)’

= Y'NTATMT = YINTA" MT( ANATMT)’

= A'™MT = ATMT(ANA'MT)’

= ATMTXT = ATMT(ANA™MT) X7

= AT = ATMT(ANA™MT)' ' ANAT,
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and therefore
A = (AN'ATM) A. (5)
By Lemma 1, A < AATA, and so, since M = I. N > I, we have
A < ANTATMA, (6)
and hence, postmultiplying by N'A"MA_ we get
ANTATMA < (ANTATM )" A. (7)
Repeated postmultiplication of (7) by N'A"MA gives
A < ANTATMA < (ANTA'M)" A
< (ANTATM) A < - < (ANTATM) A = A,
where the last equality follows in view of (5). Therefore
A = ANTATMA = ANA"MA = ANATM'A = ANTATM'A, (8)

where the last three equalities follow in view of Theorem 2.1 (a).
Now we show G = Ay, y= N'ATMT". We have shown AGA = A. But
GAG = NTATMTANTAT™MT = NTATMT [in view of (8)], and
MAG = MANTATMT
= MANA™MT [using Theorem 2.1(a)]
= (MANTA™MT)" = (MAG)".
So MAG is symmetric. Showing GAN symmetric is similar. So A \ =
NTATMT. h
(ii) = (i): Let ANATMA = A. By Lemma 1, A < AATA. As M = I,
N > I, we have A < AATA < ANATA < ANA"MA = A. Thus

AATA = A = ANATA. (9)
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The second part of the above equation gives
AAT = ANATAAT
= ANA" [using the first part of (9)]
= ANTAT (since AAT is symmetric).

Similarly it can be shown that ATMA = ATM"A = A’A. Now using these
facts, Equation (9), and the assumption, one can easily see that Ay =
NTATMT.

(ii) = (iii): Without loss we take ANATMA = A. Suppose two rows of A,
say, the ith and the jth are not disjoint. Then there exists k such that
ay = ay = 1. Now if a,, = 1 for some r, then we have

=1

it ’

@, 2 Ay dym;a

and hence a;, = L Thus the ith row of A is entrywise dominated by the jth
row. Slmllarly we can show that the jth row of A is entrywise dominated by
the ith row, and hence the two rows must be identical.

The proof of the remaining part is essentially contained in the proof of
(i) = (.

(iii) = (ii): Let B = AA"A, and suppose b,; = 1. So there exist [}, [, such
that

aill - (1121] = alﬂ- = 1.

Now observe that the [;th column of A is nonzero. So by hypothesis we have

that the ith row of A is equal to the l,th row of A. But we also have

a, = 1. So a,; = 1 and therefore AA TA < A. It follows by Lemma 1 that
= AATA. Since ANAT = AAT, ATMA = ATA, then

ANATMA = AATMA = AATA = A,

and (ii) is proved. The equivalence of (iv) and (ii) is proved similarly. That
completes the proof of the theorem. (]

An examination of the proof of Theorem 2.2 reveals that condition (b)
may be replaced by the wezker condition ANATMA > A
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We now provide o proof of Theorem 111,

Proof of Theorem 1.1 The equivalence of ()=(vi) of the theorem
essentially follows from Theorem 2.2 by setting M = N = [. The cquivalence
of (v) and (i) is casy to prove, and so is the cquivalence of (vit) and (viii).
The implications (v) = (ix) and (ix) = (i) are easy to prove. Thus we have
shown that assertions (1) -(ix) are equivalent.

It is easy to sec that (ix) = (x). If (x) holds, then it can be verified that A
is the Moore-Penrose inverse of A and thus () holds.

We finallv show the equivalence of (xi) with the remaining conditions. If

() holds, then Gii) holds, and setting (G = A", we see that (xi) holds as well.
(7()1]\'er3(’l)', suppose (xi) is true. Then GAA'GT = ATG" = (GA)", and thus
GA is symmetric. Now from CAA" = A" is follows that AGA = A. Similarly,
using ATAG = A" we conclude that AG is symmetric. Now it can be
verified that GAG must be the Moore-Penrose inverse of A and thus (i)
holds. That completes the proof. [ ]

We remark that all the assertions in Theorem 1.1 except (vii), (viii) are
essentially contained in the literature: see [2,4,5]. However, we have given
proofs for completeness.

As shown in Theorem 1.1, if A admits « Moore-Penrose inverse, then it
must be A”. Sometimes it happens that the weighted Moore-Penrose inverse
Ay = A", the trivial case being M = N = I. So the obvious question is
whether we can precisely point out the cases when Ay v=A". To answer
this question we need the following result.

THEOREM 2.3, Let A, M. N. be as in Theorem 2.2. Then the following
are cquicalent:

(i) Ay \ exists.
(ii) There exist permutation matrices P and Q such that

7, 0 0 0]
0, 0 0

A = PAQ = Lo . .
0 0 0

L0 0 - 0 0]
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Setting
Ny, Nl_k+l
N= | RO
lel\l Nk+l<k+l

a conformal partition, and then using (10), we see that all the blocks Nij = 0,
1 <i,j<k i#j and that N; # 0, 1 <i <k. We have a similar conclu-
sion regarding M. o

It is easy to see that G = NTATMT is the weighted Moore-Penrose
inverse of A with respect to M. N. But

G = (Q"NTQ)(Q'ATPT)(PMTPT) = QT(NTATMT)PT = QTGPT. (11)

Now carrying out the block multiplication in the equation G =NTATM", we
see that G is of the form given in the statement.

Now by (11), the proof of (i) = (ii) is complete.

Conversely, suppose (i) holds. Defining G as in the statement of
the theorem, it is easy to check that AGA = A. Since G = NTATMT, we
have ANTATM'A = A. This implies PANTATMTAQ = PAQ. Therefore
ANTATMTA = A, and thus A}, y exists, by Theorem 2.2. |

As a simple corollary we state the following result without proof.

COROLLARY 1. Let A, M, N be as in Theorem 2.2. Then Ay = AT if
and only if condition (ii) of Theorem 2.3 is satisfied with the additional
proviso that M and N are block diagonal.

We also have the following.

COROLLARY 2. Let A, M, N be as in Theorem 2.2, and further suppose A
has no zero row or zero column. Then, if Ay y exists, it equals AL

Proof. Observe that A has no diagonal zero block. Hence by Theorem

2.3 M, N are block diagonal. Furthermore, that Ay  exists implies that G
exists. The result now follows by Corollary 1. [ |
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We conclude with an example which shows that the condition that A has
no zero row or zero column is necessary in Corollary 2.

ExaMprLE. Let

[t oo _[r 1 _
e P B F R

1 0

Then ANA'MA = A, but NA™M = [1 0

] + A’

We sincerely thank the referee for a careful reading of the manuscript and
for suggesting Theorem 2.3.
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