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ABSTRACT. It is shown that: (a) If R is a prime right Goldie right CS ring
with right, uniform dimension at least 2, then R is left Goldie, left CS; (b) A
semiprime ring R is right Goldie left CS iff R is left Goldie, right CS.

All rings are associative having an identity and all modules are unitary. A right
module M over a ring R is called CS (or extending) if every submodule of M is
essential in a direct summand of M, or equivalently, if every complement submodule
of M is a direct summand of M. A ring R is called right CS (resp., left CS), if Rg
(resp., rR) is a CS module. CS modules have been extensively studied by many
authors.

A ring R is defined to be a right (left) Goldie ring if R has ascending chain
condition on right (left) annihilators and the right (left) uniform dimension of R
is finite. A right Goldie ring R is (semi-)prime if and only if R has classical right
quotient ring which is (semi-)simple artinian. For notation not defined here we

refer the reader to [1], [2] and [3].

Theorem 1. A prime right Goldie, right CS ring R with right uniform dimension
at least 2, is left Goldie, and left CS.

Proof. Let n be the right uniform dimension of R. By assumption, n > 2. Since
R is right CS, R = e;R& --- ® e, R where each e;R is uniform and {e;}'_; is a
system of orthogonal idempotents of R. Let @ be the classical right quotient ring
of R. Then we have:

/€1R61 erRey --- €1R€n\ (61Q61 e1Qez --- elQen\
621261 62}%62 <. 62}26n 626261 62(262 cee 62626n
R c _ e ~0
\enRe1 enRez -~ enRen) \enQer enQer -+ enQen)
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Henceforth, we will identify

/elRel 61R62 cee €1R€n\
€2R€1 €2 R62 s CgRen
KenRel e,Rea --- e, Ren /
with R and
(61Q61 e1Qea --- elQen\
eaQe; exQep - exQen
\671@61 enQea - 6nQen)
with Q.
a ... .
-
Let o = ' “| be an element of Q with a; € e;Qe;, a; # 0. Then
\or
(61Q€1 erQes --- elQen\
0 0 0
for the minimal right ideal M = ' ' ' of Q, aM is

0 0 0
a minimal right ideal of Q, too. Hence R N aM is a (nonzero) closed uniform
right ideal of R. Consequently, R N aM is generated by an idempotent e € R.
T1 Lo - -’En\
o 0 --- 0

Therefore, there exists an element 3 = ' ' ' such that a8 =

\o 0 - o)

(alxl airy - alxn\
azr; a2z -+ 42T,
= e € R, where z; € e1Qe;. Hence a;r; € e;Re;
\anx]_ an$2 ¢ anxn
for i,7 = 1,--- ,n. Note that at least one z; is nonzero. After squaring this ma-

trix and comparing the corresponding entries of this matrix and its square we get
(a1zx)(arxr) +- - -+ (a1Zn)(anTk) = a1 Tk, where x is the first nonzero entry in the
first row of (. Since a; # 0, it follows zrarTr + Tr+10k+1Zk + -+ + TnAnTk = Tk-
As xi € e1Qek, there exists z} € exQe; such that zpx} = e;, because e1Q = exQ.
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Consequently,
(1) Tkak + Th41Qk+1 + -+ Tnln = €1.

Note that if e; Re; is a division ring, then R is a simple artinian ring. In this
case the statement in our theorem is trivially true. Therefore, we assume that
e;Re; # e1Qey. Since n > 1, we can choose a1 € e;Qe; \ e;Re;, az = -+ =
a,.1=0, 0#a, € e,Re;. Then we must have k =1, i.e. x; # 0. For, if z; =0,
the equation (1) becomes z,a, = e;. Multiplying this with a; on the left we get
(a1Tn)a, = aje; = aj. From this and a;z, € e1 Rey, it follows that a1 € e; Re;, a
contradiction. Hence z; # 0. Thus equation (1) becomes z1a; + Tnan, = €1, and so

(2) ria; = €1 — Tpln.

Let 0 £ y € e;Re, C e1Qe,. So there exists y' € e,Qey, such that y'y = ey,
because €1Q = e,Q. We note that ya, # 0. For, if ya, = 0, then y'(ya,) =
(v'y)an, = 0, and so a, = 0, a contradiction. Therefore (yan)z1 # 0. Now 0 #
y(anzi) € (e1Re,)(enRe;) C e;Re;. Furthermore, ya,r, € e1Ren, and an €
e, Re; yield yan,zna, € e;Re;. Next, multiplying (2) on the left by ya, we get
(yanzi)a1 = ya, — yanTpa,. Consequently, a; = (yanz1) " (yan — yanzrnan). This
shows that e; Re; is a left Ore domain. Similarly, we conclude that every e; Re; is
a left Ore domain.

Therefore, each Re; is a uniform left ideal of R. This is folklore; however we
provide an argument here for the sake of completeness: If A, B are nonzero sub-
modules of Re; such that ANB = 0, then e;ANe; B = 0. Since e; A and e; B are left
ideals of the left Ore domain e; Re;, either e;A = 0 or ¢; B = 0. Consequently, either
BA =0 or AB = 0. This is a contradiction because R is a prime ring, proving the
claim. Since R = Re; & - - - ® Re,,, rR has finite uniform dimension. Moreover, as
R is prime right Goldie, it has DCC on right annihilators (cf. {4, Lemma 7.2.2]).
Therefore, R has ACC on left annihilators, proving that R is left Goldie.

Finally, we show that R is left CS. Note that @ is the classical left and right
quotient ring of R. Let U be a non-essential left ideal of R. Then there are
orthogonal idempotents e, f € Q, such that @ = Qe ® Qf, where U is essential in
rQe, and Qf # 0. Hence U(fQ) = 0. As fQ N R # 0, the right annihilator of U
in R is nonzero. Moreover, let 0 # a € R and 7(a) be the right annihilator of a in
R. Then R = C & D, where r(a) is essential in D. Since aR = R/r(a) and aR is
a nonsingular right ideal of R, we must have r(a) = D. This shows that aR = C,
and in particular that aR is projective. Hence R is a right p.p. ring. Thus R is left
CS by [1, Proposition 12.3]. The proof is complete. [

Remark 1. Theorem 1 is not true, in general, if the right uniform dimension of the
prime right Goldie ring is 1, since there exist right Ore domains (hence right CS)
which are not left Ore (hence not left CS). For the existence of such a domain, see
[3, Exercise 1, p. 101].

Remark 2. Let R be a semiprime right Goldie right CS ring. Then Ry is a direct
3 sum of uniform right ideals e;R, i = 1,---,n, e = e;. After renumbering the
i indices, if necessary, we get R = [e;R] @ --- & [e:R], where each [e;R] is a direct
" sum of uniform right ideals belonging to {e; R} ; that are subisomorphic to each
other, and Hompg(e;R,exR) = 0 for j # k (j,k € {1,---,t}). It is easy to check
that each R; = [e;R] is an ideal of R, and is itself a prime right Goldie right CS
ring. Hence R = R, @ --- @ R; is a ring direct sum of prime right Goldie right
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CS rings. Let n; be the right uniform dimension of R;. By Theorem 1, for any
n; > 1, R; is also left Goldie and left CS.

The following consequence of Theorem 1 is a stronger version of [1, Corollary
12.9].

Corollary 2. For a domain K the following conditions are equivalent:
(a) (K& K)k is CS;
(b) k(K& K) is CS.
If K satisfies (a) or (b), then K is right and left Ore.

Proof. (a) = (b). By (a), K is right Ore; hence the 2x 2 matrix ring M>(K) over K
is a prime right Goldie ring of right uniform dimension 2. Moreover, by [1, Lemma
12.8], (a) implies that M(K) is right CS. By Theorem 1, M>(K) is left CS. Again
by [1, Lemma 12.8], x(K & K) is CS, proving (b). Similarly (b) = (a) holds. The
last statement is clear. O

Theorem 3. For a semiprime ring R, the following conditions are equivalent:
(i) R is left Goldie, right CS;
(ii) R is right Goldie, left CS.
In this case, R= R, & --- ® R,,, where each R, is prime, right Goldie, left
Goldie, Tight CS and left CS.

Proof. We need only show (i) => (i%); then the implication (i7) => (¢) is obtained in
a similar way.

Let R be a semiprime left Goldie right CS ring. We claim that R has finite right
uniform dimension. Assume on the contrary, that R contains an infinite direct
sum @zl A; of nonzero right ideals A;. Let K; be the complement of A; in R
containing €@,-, A;. Since R is right CS, R = K; ® B, for some nonzero right
ideal B; of R. Let Ko be the complement of A, in K, containing @23 A;. Since
(K1)r is CS, K; = K2 @ B, for some nonzero submodule Bs; of K;. This yields
R = Ko ® B; © Bs. Proceeding in this way we can produce an arbitrary number of
orthogonal idempotents in R, a contradiction, because R is left Goldie. Hence R
has finite right uniform dimension. Since R is semiprime left Goldie, R has DCC
on left annihilators, and so R is right Goldie. By Remark 2, R=Ri®---® Ry,
a direct sum of prime right and left Goldie right CS rings. Let n; = u-dim(R;) g,
= u-dim(g, R;). If n, =1, then R; is a uniform left R;-module, and hence left CS.
For n; > 2 we apply Theorem 1 to obtain that R; is also left CS. Hence R is left
CS. The last statement is clear from the proof. O
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