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1 Introduction

Throughout all rings have unity (3 0) and all modules are unital. Given a ring
R and a right R-module M, we denote by Soc(M) and J(R) the socle of M and
the Jacobson radical of R respectively. Given a nonempty subset S of R, we set

r(R;S)={reR|Sr=0} and ¢R;S)={reR|rS=0}.

We denote by E(M) the injective hull of M. For a submodule NV of a module M,
the notations N C. M and N C%® M respectively denote that N is an essential
submodule of M and N is a direct summand of M. Recall that a closure of N in
M is a maximal essential extension of N in M. The submodule N is said to be
closed in M if it has no proper essential extensions in M. Given a module L, M
is said to be L-injective if for any submodule K C L, every o € Hom(K pp, Mp)
is the restriction of some 3 € Hom(Lg, Mp).
Consider now the following conditions for a module M.



(C1) For every submodule N of M there exists a direct summand L of M with

NC. L.

(C2) If a submodule N of M is isomorphic to a direct summand of M then N
itself is a direct summand of M.

(C3) If A and B are direct summands of M with ANB =0 then A® Bisa
direct summand of M.

A module M is called continuous (respectively, quasi-continuous) if it satisfies
(C1) and (C2) (respectively, (C1) and (C3)).

It is well-known that a module M is quasi-continues if and only if
eM C M for every idempotent e € End(E(M)p). (1)

A ring R is said to be a right w-ring if every right ideal in R is a quasi-
continuous module.

Let n be an integer with n > 1, let Dy, Do, ..., D, be skew fields and let A
be a right continuous right 7-ring, all of whose idempotents are central, with
essential ideal P such that A/P is a skew field and the right A-module A/P is
not embedable into Ax. Next, let V; be D;-D;,-bimodule such that

dim({Vi}p,,,) =1 foralli=1,2,...,n—1,

and let V,, be a D,,-A-bimodule such that V,,P = 0 and dim({V,,}a,p) = 1. We
denote by Gy (D1,...,Dn, A, V1, ..., V,) the ring of (n + 1) x (n + 1) matrices
of the form
Dy W
Dy Vo
D3y V3

where it is understood that V;V; = 0 for all 4, j.

Recall that a nonzero right R-module M is called square free if it does not
contain the direct sum of two isomorphic nonzero submodules. A ring R is said
to be square free if the module Ry is square free.

The study of rings, for which every right ideal is quasi-injective (known as
right g-rings), was initiated by Jain, Mohamed and Singh [10] in 1969. Since then
such rings were studied by a number of authors [1, 2, 5, 6, 7, 8, 11, 12, 13, 14].
Recently Jain, Lépez-Permouth and Syed [9] extended this line of research by
studying right m-rings. They described the structure of indecomposable non-
local right continuous right m-rings and obtained the following useful general
result.
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Theorem 1.1 ([9, Theorem 2.6]) A right w-ring R is the direct sum of a
semisimple Artinian ring and a right square free right m-ring.

The goal of the present paper is to describe the structure of right continuous
right m-rings.
We show that every ring of the form G, (Dy,...,D,, A, Vi, ..., V,) is aright

continuous right 7-ring (Proposition 2.16). Our main result, describing the
structure of right continuous right 7-rings, is the following theorem.

Theorem 1.2 A ring R is right continuous right w-ring if and only if R is
the direct sum of finitely many rings of the form G,(Dy,..., Dy, A V), ..., Vo),

finitely many indecomposable non-local right continuous right w-rings, and a
right continuous right w-ring all of whose idempotents are central.

2 Proof of the Main Results

First we show that a right continuous right #-ring R has the form described
in Theorem 1.2. We conclude from Theorem 1.1 that, proving Theorem 1.2,
we may assume that the ring in question is a square free right continuous right
T-ring.

Throughout this paper R is a square free
right continuous right 7-ring.

Because R is right continuous and square free, it follows at once from [15, Lemma
3.4, Proposition 3.5 and Theorem 3.11] that

R/J(R) is a strongly regular right continuous ring. (2)
Furthermore, note that
if P is a right primitive ideal of R, then R/P is a skew field, (3)

because R/J(R) is strongly regular, and so R/P = (R/J(R))/(P/J(R)) is a
primitive strongly regular ring; thus R/P is a skew field.
The following result follows at once from [9, Lemma 3.2].

Lemma 2.1 Let S be a minimal right ideal of R and let e be an idempotent of
R such that S C, eR. Suppose that eR(1 —¢) # 0. Then eRe is a skew field
and eR(1 — e) is the only proper submodule of eR. In particular, eR(1 —e) = S.

Given two right R-modules M and N, we set

Ten (M) = > f(M).

feHom( Mg, Ng)

Combining [9, Lemma 2.3(a)] with [9, Theorem 3.5] we get at once
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Lemma 2.2 Let A and B be two right ideals of the ring R such that ANB = 0.
Then Trp(A) is a direct sum of finitely many of minimal right ideals of R.

Our plan of proving Theorem 1.2 consists of several steps. First, we show
that the ring R contains a finite set of nilpotent minimal right ideals that deter-
mines a direct summand R; of R where R is the direct sum of indecomposable
right continuous right 7-rings. Furthermore, by setting R = Ry () R’, we shall
show that the ring R’ contains finitely many nilpotent minimal right ideals of
R', determining a direct summand Ry of R, where Ry is the direct sum of rings
of the form G, (Dy,..., Dy, A Vh,...,V,). Finally, putting R = Ry & Ry ) Ra,
we complete the proof by showing that R3 is a right continuous right 7-ring all
of whose idempotents are central.

We continue with the following two general statements.

Lemma 2.3 Let A be a ring, let M and N be two right A-modules and let u
be a nonzero idempotent of A. Suppose that wA(l —u) = 0, Mu = M and
Nu= N. Set B=uA. Then:

(1) B is a ring with identity u and B = uA = uAu.

(2) Both M and N are right B-modules canonically.

(3) Every submodule of Mp is a submodule of M4.

(4) Every right ideal of the ring B is a right ideal of the ring A.

(5) My is simple if and only Mp is so.

(6) Hom(Mp, Np) = Hom(Ma, N4).

(7) Mp = Np if and only if My = Ny.

(8) If A is a right continuous right w-ring, then so is B.

(9) If B & M is a quasi-continuous right A-module, then Mp is injective.

Proof. Clearly B = uA = uAu + uA(l — u) = uAu and so u is the identity
of the ring B. Since Mu = M, mu = m for all m € M and whence M is a right
B-module. Analogously N is a right B-module. Given a submodule L of Mg,
we have that L = LB = LuA and so L is a submodule of M 4. Both (4) and (5)
follow from (3) at once. Next, the inclusion Hom(Mp, Ng) 2 Hom(M4, Na) is
obvious. Let f: Mg — Np. Given m € M and a € A, we have that ua € B
and m(1 — u) = 0. Therefore

f(ma) f(m{ua + (1 —u)a}) = f(m{ua}) = f(m){ua}
= f(m){ua+ (1 —u)a} = f(m)a



forcing f € Hom(M 4, N4) and so Hom(Mpg, Ng) = Hom(M4, N4). Clearly (7)
follows from (6).

Suppose that A is a right continuous right 7-ring. Then (4) implies that B
is also right continuous ring right m-ring.

Finally, assume that B () M is a quasi-continuous A-module. Then M, is
B s-injective by [15, Proposition 2.10]. It now follows at once from (6) that Mp
is an injective module. O

Lemma 2.4 Let {L, |y €'} be a family of simple right A-modules, let M =
(OyerLy and let K be a submodule of M. Suppose that M is square free. Then
there exists a subset @ C ' such that K = Oyuealy.

Proof. It is well-known that there exists a subset A C I' such that M =
K ¢ L where L = ®pyealy. Let m : M — L be the canonical projection of
modules and set Q@ = I'\ A. Given w € Q, we have that L, N L =0. As L, is
simple, either L, = w(L,) or w(L,) = 0. Since M is square free, we conclude
that m(L,) = 0 and so L, C ker(w) = K. Therefore (b,cql, C K. Clearly
(bweals) ® L = M and so the equality K L = M forces K = (hypenly. O

In what follows S., v € I, are all homogeneous components of Soc(R) and
e4 € R, v € T, are idempotents such that S, C. e,R for all v € I'. Since
qul‘ S, = (DyerS, and each S, is an essential submodule of e, Rpg, it is easy
to see that ZTET' e R = ®yereq R. It now follows at once from [15, Lemma 3.8
that we may assume without loss of generality that

eqeg =0 for all o, 8 € I" with o 5 . (4)
Given v € I, we note that
S, is both an ideal and a minimal right ideal of R. (5)

Indeed, S, is a sum of isomorphic minimal right ideals and because R is a square
free, we conclude that S, is a minimal right ideal of R. As a homogeneous
component of the socle of a ring, S, is an ideal of R.

Since S, C, e, R, we conclude that

e, R is a uniform module for all a € T, (6)
Therefore
given a central idempotent e of R, either ee, =0 or ee, = €., (7)

because e, R = (eqne)R @ [ea(1 — )R] and so either eqe = 0 or eq(1 —¢) = 0.
We set
Q= {ye€TI| e, is not central}.

wn
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Lemma 2.5 Let u,v be orthogonal idempotents of R such that ulRv # 0. Then
there exists a finite subset Q. ., C Q such that uRv = ®ueq, ,Su € Soc(R). In
particular, uRv is an ideal of R. Moreover uRvRu = 0 = vRuRv.

Proof. Set A = vR and B = uR. It is well-known that every homomor-
phism Ap — Bpg is given by the left multiplication by an element of uRwv.
Therefore Trp(A) = uRvR and so Lemma 2.2 yields that uRvR is direct sum
of finitely many minimal right ideals of R. Since Rp is square free, it now
follows from Lemma 2.4 that there exists a finite subset ©,, C I'" such that
uRVR = Dueaq, , S € Soc(R).

Now consider the right ideal uRvRuRR. We already know that vRuR =
ZJEQM S. CvR. Given w € £, and r € uRwv, either S, =0, or S, = 5,
because S, is a minimal right ideal. The latter case is ruled out by the facts
that S, NS, C uRNvR = 0 and that R is square free. Therefore S, = 0
for all w € Q,,, and r € uRv forcing uRvRuR = 0. In particular, uRvRu = 0.
Analogously, vRuRRv = 0. Note that v and 1 — v are orthogonal idempotents
and so (1 — v)RvR(1 — v) = 0 by the above result. Since u(l —v) = u, we see
that 0 = u(1 — v)RvR(1 — v) = uRvR(1 — v). Therefore

Z S, =uRvR =uRvRv +uRvR(1 —v) = uRvRv = uRv.
WEN,,,

It now follows from (5) that uRv is an ideal of R.
Let w € €, and assume that e, is central. By (6), e, is a uniform
module. As e, is central,

(esuR) N (e,vR) C (uR) N (vR) = 0.
Therefore either e, u = 0 or e, v = 0. Say, e,v =0. We have 5, C ulRv and
S, =e.S, Ce,uRv =uR(e,v) =0,

a contradiction. Therefore e, is not central and so w € Q forcing €, ., C €.
The proof is thereby complete. O

If Q = (), the Lemma 2.5 yields that eR(1 —e¢) = 0 = (1 — ¢)Re for any
e=¢e2eR (because Q¢ 1_. = ) = Qj_.,.) and so all idempotents are central.
In this case there is nothing to prove. Therefore we may assume without loss of
generality that Q # (.

Lemma 2.6 Let n be a positive integer, let wy,wa,...,w, € Q and let u =
€w, +€uw,+...+e,, . Suppose that uR(1—u) = 0. Then u is a central idempotent.

Proof. Set u; =e,, and T; = S,,, i =1,2,...,n. By Lemma 2.3(1),

ulRu = uR. (8)
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Assume that (1 — u)Ru = 0. Then the equality uR2(1 — u) = 0 implies that u
is central and there is nothing to prove. Therefore we may assume without loss
of generality that (1 — u)Ru # 0.

We set () = Z?zl u;Ru; and [ = Z\i#j wiRuj. Since w = uy +ug + ...+ Uy,
we have

uRu=@Q+ 1. (9)
We claim that
( is the direct sum of local rings w; Ru;, i = 1,2,...,n;
I is a nilpotent ideal of the ring uRu and J(uRu) = Y | J(u;Ru;) + I;
(uRu)/J(uRu) = O, (uiRu;)/J(ui Ru;). (10)

Indeed, since u;u; = 0 for all 7 # j by (4), Q is the direct sum of rings u; Ru;,
i = 1,2,...,n. It follows from both (6) and [15, Proposition 2.7] that u;R
is an indecomposable continuous R-module. Since, u;Ru; = End(u;Rg), [15,
Proposition 3.5] yields that (u; Ru;)/J(u; Ru;) is von Neumann regular. As u; Ry
is indecomposable, [15, Lemma 3.8] now yields that (u;Ru;)/J(u;Ru;) has no
nontrivial idempotents and so u; Ru; is a local ring. Therefore @) is the direct
sum of local rings u; Ru;, i = 1,2,...,n.

By Lemma 2.5, each u;Ru; (with ¢ # j) is an ideal of the ring R. Since
(u;{uj}g = (), we see that I, being a sum of nilpotent ideals, is also an nilpotent
ideal of 2.

Obviously I C J(uRu), @ + I = Q ® I and so the factor ring (uRu)/I is
canonically isomorphic to @ = ®,u;Ru;. The result now follows from the
obvious fact that J(Q) = O, J(u;Ru;). Therefore (10) is proved.

Recall that each T; C u; R C uR = uRu by (8) and so Tyu = T;. Therefore

each T; is a simple right wRu-module (11)

by both (5) and Lemma 2.3(5).

By (10), (uRu)/J(uRu) is the direct sum of skew fields (u; Ru;)/J(u; Ru;),
and so there are exactly n pairwise non-isomorphic simple right «Ru-modules.
On the other hand we know that each T} is a simple right uRu-module. Since
{Ti}r # {T}}r for i # j, it follows from Lemma 2.3(7) that {7} }uru # {7} }uru
for i # j and whence

every simple right uRu-module is isomorphic to some T7;. (12)

Recall that (1 — u)Ru # 0 by our assumption. According to Lemma 2.5,
(I1-uw)Ru=73% cq, . S Clearly each S, is a right uRu-module and so it is
a simple right uRu-module by both (5) and Lemma 2.3(5). According to (12),
{S.Yuru = {T; }uru for some 1 <i < n, and whence Lemma 2.3(7) implies that
{Sutr = {Ti}r. Finally, Sy NT; € (1 —u)RNuR = 0, contradicting square
freeness of R. Thus (1 — u)Ru = 0 and the proof is completed. O
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Given w € €, it follows from Lemma 2.6 that e, R(1 — e,) # 0 and so
Lemma 2.1 yields that

e, Re,, is a skew field and S, = e, R(1 — e,) for all w € Q. (13)

In particular, S = 0, which explains our attention to nilpotent minimal right
ideals of R.

Lemma 2.7 Let w € Q. Then the factor ring R=R/r(R;S.) is a skew field,
dim({S,}z) =1 and Rr = {S,}r. Morover,

((R;S,) =(1—e,)Re, +e,R(1—e,)+ (1 —e,)R(1—e,)

and RJU(R;S,) = e, Re, is a skew field. In particular, S, is a completely
reducible left R-module.

Proof. Set e = ¢, and § = S,. Since § is a simple right R-module by
(5), 7(R;S) is a primitive right ideal of R and so R is a skew field by (3).
We see that S is both a right vector space over R and a simple right module.
Therefore dim(Sg) = 1. Take any 0 # o € S. Then the map ¢ : R — 5,
r s ar, is an epimorphism. Obviously ker(¢) O 7(R;S). Since R is a skew
field, ker(p) = r(R; S) and so ¢ induces an isomorphism of R-modules R and
S.

Since S C eR, eS = S. It now follows from both Lemma 2.5 and (13) that
(1—e)ReS = (1—e)ReR(1—e) =0 and so

P=(l-¢eRe+eR(1—¢e)+(1—-€e)R(1—e)C {(R;S).

Clearly P + eRe = R. By (13), eRe is a skew field and so eRe N {(R;S) = 0:
otherwise ¢(R;S) = R which is impossible. Since R = eRe+ P and P C ((R: S),
we conclude from the modular law that {(R;S) = P. Therefore R/P = eRe
and so R/P is a skew field. It is now clear that S is a completely reducible
left R/ P-module. That is to say S is completely reducible left R-module. This
completes the proof. O

Lemma 2.8 Let w € €. Suppose that there exists v € I'\ {w} with e, Re # 0.
Further, let w be an idempotent of R such that e ,w = we, = eqw = we, = 0.
Then

(1) S, = e Re, and e, Rw = 0; in particular, e,Re, = 0 for all o € T with
o ¢ (w7}

(2) y€Q\{w}.
(3) eyRe is a skew field, {S,}r = {(eyR)/Sy}r and dim({S.}e, Re,) = 1.
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Proof. (1) Set e = e, and S = S,,. Since ee, =0 = eye by (4), Lemma 2.5
implies that eRe, is an ideal of R and eRe, C Soc(eR) = S forcing eRe, = S.
Therefore

Se, =S8 and S(1-e,)=0. (14)

It follows at once from (14) that Sw = 0. Suppose that eRw # 0. Then
Lemma 2.5 yields that eRw C Soc(eR) = S and so eRw = S contradicting
Sw = 0. Therefore eRw = 0. Given a € I'\ {w,7}, evea = enty = €164 =
€aty = 0 by (4) and so eRe, = 0 by the above result (with w = e, ).

(2) Indeed, assume to the contrary that v € I' \ Q. Then e, is a central
idempotent by the definition of Q. Next, since v # w, ee, = 0 by (4) and so
S = eRe, = ee, R = 0, a contradiction. Thus y € Q\ {w}.

(3) Since v € Q, (13) implies that e, Re, is a skew field, S, = e, R(1 — e)
and e; R = ey Re, + 5,. By (14), 5SSy = Se,R(1 — e5) C S(1 — e4) = 0. Next,
pick 0 # s € S. Since se., = s,

S = sR = se,R = s(eyRe, + S,) = seyRe,

and so we conclude that dim(Se ge,) = 1 and Sg = {(e,R)/S, } r via @ — sz,
r € e, R. The proof is completed. O

Let w € Q be as in Lemma 2.8, It follows from Lemma 2.8(1) that there
exists a uniquely determined element v € €2 satisfying (1)-(3). We denote v by
o(w). fweQand e,Re, =0 for all @ € T'\ {w}, then we shall say that o(w)
is not defined. We now set

' ={weQ|o(w)is defined} and Q" =Q\ Q"
Lemma 2.9 The map o : Q) — Q is injective.

Proof. Assume that there exist a, 3 € @ with @ # § and o(a) = o(3).
Set v = o(«). By Lemma 2.8(3), both {S,}r and {Ss}r are isomorphic to
{(exR)/Sy}r and so {Sa}r = {Ss}r contradicting square freeness of R. There-
fore o is injective and the lemma is proved. O

Lemma 2.10 Suppose that |Q)] = co. Then there exist an infinite subset A C Q
and mutually orthogonal idempotents us, 6 € A, of R such that Ssus # 0 and
(usR)NSs =0 for all § € A.

Proof. Let w € Q. By (5), S, is a simple right R-module and so each
P, =r(R;S,) is a primitive right ideal of R. Setting P = NueqP.., we sce that
J(R) C P. Therefore (2) yields that both R = R/J(R) and R/P are strongly
regular rings. Since {S,}r % {Sa}r for all @ # § € Q, Lemma 2.7 implies that
P, # Pg (otherwise S, = R/P, = R/Pz = S3). Therefore {FP,,/P | w € 0} is
an infinite set of distinct primitive ideals of R/P and so R/P is not a semisimple
Artinian ring. Therefore it contains an infinite family {v; | ¢ = 1,2,...} of

9
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nonzero pairwise orthogonal idempotents by [3, Corollary 2.16]. Since v; # 0
and P = MNgeql., there exists w; € Q with v; & P, /P. Obviously each
P,. /P is a primitive (and so prime) ideal of the ring R/P. Recalling that
R/P is strongly regular, we see that each v; is central and so v;v; = 0 forces
v; € P, /P for all j # i. In particular, w; # w; for all 7 # j and whence the set
A ={w;|1=1,2,...} is infinite. For the sake of uniformity of notation we set
v,, =v; for all  =1,2... and note that vs & Ps/P, § € A.

Since R is von Neumann regular and R/P = R/P (where P = P/J(R)), it
follows from (3, Proposition 2.18] that there exists a family {ws | 6 € A} nonzero
pairwise orthogonal idempotents of the ring R such that ws + P = vs € R/P
for all § € A. As vs & Ps/P, ws € Ps for all § € A, where Ps = Ps/J(R).

Next, (13) implies that S5 = esR(1 — es) for all § € A. In particular,
1—es € Ps. Let 7+ 7, r € R, be the canonical projection R — R. We see
that T— e ¢ Ps. Since R is strongly regular and Ps is a prime ideal of R, we
conclude that zs = ws1 —es & Ps for all 6 € A and {z5 | § € A} is a set of
pairwise orthogonal idempotents.

It follows from [16, Theorem 4.9] that there exists a family of nonzero pair-
wise orthogonal idempotents {us | § € A} such that 75 = 25 for all 6 € A.
Therefore each us ¢ Ps and so Ssus # 0. Next, Uses — Uses = zse5 = 0 and
so uses € J(R). Assume that (usR) N Ss # 0. Then S5 C usR. In partic-
ular, usSs = Ss. Since esSs = Ss, (uses)Ss = Ss. On the other hand, S
is completely reducible left R-module by Lemma 2.7 and so J(R)Ss = 0 forc-
ing (uses)Ss = 0, a contradiction. Thus (usR) N Ss = 0. This completes the
proof. O

We now need the following result which is a special case of [9, Proposition
2.8]. Recall that a family {A; | i € I'} of right ideal of R is said to independent

if Zie‘, A; = DerA;.

Lemma 2.11 Suppose that {A; | i € I'} is an independent family of right ideals
of R. If for each i € I there exists a right ideal B; in R that is a homomorphic
image of A; with A; N B; =0, then I is finite.

Lemma 2.12 The set 2 is finite.

Proof. Suppose that || = co. Let A C Q and {us | 6 € A} be as in
Lemma 2.10. Set As = usR, § € A. Given § € A, us ¢ r(R;Ss) and so
sus # 0 for some 0 # s € Ss. Therefore S5 = susR = sAs and so {Ss}p is a
homomorphic image of {As} g for all § € A. Next, AsN.Ss =0 by Lemma 2.10.
Therefore Lemma 2.11 yields that |A| < oo, a contradiction. Thus Q is finite
and the proof is completed. 0O

We have gathered enough information in order to construct the ring R;. To
this end, we introduce the following concept. A sequence {w;,ws,...,w,} of
elements of the set ' is called a cycle if o(w,) = w; and o(w;) = w;41 for all

10
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i=1,2,....,n— 1. It follows from Lemma 2.8(2) that any cycle in () contains
more than one element. We continue with the following lemma.

Lemma 2.13 Let {w1,wa,...,wn} be a cycle and let u =31 ey, Then u is
a central idempotent of R and uR is a non-local indecomposable right continuous
right m-ring.

Proof. Given 1 <i <n,
ew;(1—u) =(1-uey, = eo(w.-)(l —u)=(1-u)es(w,) =0

by (4) and whence Lemma 2.8(1) (with w = 1 —u, w = w; and v = o(w;))
implies that e, R(1 —u) = 0. Since uR = ®! e, R, we get uR(1 —u) =0 and
so Lemma 2.6 implies that u is central. Clearly uR is a right continuous right
T-ring.

Assume that wRR is not an indecomposable ring. Then there exists a nonzero
central idempotent v of the ring wR with v # u. Clearly v is a central idempotent
of the ring R. It now follows from (7) that either ve,, = ey, or ve,, = 0. Set
I={1<i<n|ve, =e€,}andJ = {1l <i<n|ve, = 0}. Since
vu=vand u =3 1 €y, we now get v =3 . ey, and u —v = D e Cw;-
Clearly there exists 1 < k < n such that either k € I and k + 1 € JorkelJ
and k+1¢€I. Say, k€ I and k+1 € J. By Lemma 2.8(3) there exists an
epimorphism e, ., R — S,,,. Therefore there exists a nonzero homomorphism
(w — v)R — vR which is impossible because u — v and v are orthogonal central
idempotents. Hence wR is an indecomposable ring.

Finally, as we noted just before the lemma, any cycle in ) contains more
than one element. Therefore n > 2. It now follows from both (9) and (10) that
the ring uR = uRu is not local. The proof is completed. U

According to Lemma 2.12 the set € is finite and so || < co. Therefore, the
set ¥ contains only finitely many cycles. It follows from the injectivity of the
map o (see Lemma 2.9), that distinct cycles are disjoint. Gathering together

the direct summands of the ring R corresponding to the cycles, we obtain Ry,
the direct summand of the ring R which is the direct sum of finitely many of
indecomposable right continuous right m-rings. Therefore we may assume that

the set (' contains no cycles.

If O =, then o : Q — Q is a permutation by Lemma 2.9 and so €2 is a union
of disjoint cycles, a contradiction. Therefore

QO £Q. (15)
We set € = Y cq €w and note that e is an idempotent and

el = (E)WEQCW‘R 2 (DwEﬂS.J (16)
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by (4). We claim that

(1 —e)Re=0. (17)
Indeed, assume that (1 — e)Re # 0. Making use of Lemma 2.5 we see that
(1—e)Re =3 cq, .. So for some nonempty subset Q1. C Q and so (16)
implies that eRN (1 —e)R D (1 — e)Re # 0, a contradiction, which proves (17).
Lemma 2.3(1) and (17) together imply that

(1 —e)R is a ring with identity 1 — e. (18)
We now claim that
every idempotent u € (1 — e)R is a central element of the ring (1 —e)R. (19)

Indeed, u{(1 —e)R}(1 —u) C uR(1 — u) and so Lemmas 2.5 and 2.4 together
imply that either u{(1 — e¢)R}(1 — u) = 0 or it contains some S, w € ). The
latter case is ruled out because it would imply that

S, Clu{(l-—e)R}(1—u)JNeRC (1 —e)RNeR =0.

Therefore u{(1 —e¢)R}(1 —u) = 0. Since (1 —u){(1—e)R}u = (1—e)(1l —u)Ru,
the same argument shows that (1 —u){(1 — e¢)R}u = 0 and thus u is a central
idempotent of the ring (1 —e)R.

It follows from Lemma 2.3(8) that

(1 — e)R is a right contnuous right 7-ring,. (20)

Recall that Q" = Q\ €. According to (15), Q" # . Given w € Q" we
have that e, Re., = 0 for all v € I" by the definition of the set . In particular,
e,Re = 0 and so S e = 0. Therefore S,(1 —¢e) = S, and whence S, is a right
(1 — e)R-module by Lemma 2.3(2). We claim that

S, is a simple injective right (1 — e¢) R-module for all w € Q. (21)

Indeed, according to Lemma 2.3(5), S,, is a simple right (1 — e)R-module. Since
S. C eR, we see that (1 —e)R+ S, = (1 —e)R® S,. Being a a right ideal of
the right 7-ring R, (1 — e)R (b S, is a quasi-continuous right R-module and so
S, is an injective (1 — e)R-module by Lemma 2.3(9). Therefore (21) is proved.

Lemma 2.14 There exists a family {p, | w € Q" = Q\Q'} of nonzero pairwise
orthogonal idempotents of the ring (1 — e)R such that

(1) poR is a right continuous right w-ring with identity p,, all of whose idem-
potents are central, and S, is a stimple injective right p,, R-module for all
w € Q'; moreover, r(p,R; S.) is an essential right ideal of the ring p. R,
poR/r(p.R; SL) is a skew field and the p,R-module S, is not embedable
into p, R.
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(2) eap, =0=p,e, and p,Req =0 for alla € Q, w e Q.
(3) eaRp, =0 for all a € Q\ {w} and w € Q.

Proof. Set u =1 — ¢ and T = uR. It follows from (17), (19) and (20)
together that w is the identity of the right continuous right m-ring 7" all of
whose idempotents are central. Further, let w € Q7. By (21), S, is a simple
right T-module and so P, = r(T;5,) is a right primitive ideal of T. Now
(3) vields that T'/P, is a skew field. Setting P = M ecq~ P, and making use
of Chinese Reminder theorem we get that T/P = [[ cq.T/P. and so the
ring T'/P contains pairwise orthogonal idempotents u,, w € Q. such that
P,/P = (1—u,)(T/P). That is to say

1—u, € P,/P for all w € Q". (22)
Recall that T = T/J(T) is a strongly regular ring by (2) and J(T) C P.

Therefore it follows from [3, Proposition 2.18] that the ring T contains pairwise
orthogonal idempotents v, w € Q" such that v,+P = u,, in T/P = T/P, where
P = P/J(T). Next, [16, Theorem 4.9] implies there exists a family of nonzero
pairwise orthogonal idempotents {p,, | w € Q"} C T such that p,, + J(T') = v,
for all w € Q”. Therefore p,, + P = u,, in T/P. Now (22) yields that

Supw = S, forall we Q. (23)

Since all idempotents of T are central, we conclude that p,R = p,T is a right
continuous right 7-ring with identity p. all of whose idempotents are central.
Moreover, (21) and (23) together yield that S, is a simple injective right p, R-
module. Let Q = r(p.R;S.). Assume that the right p,R-module S, is em-
bedable into p,R. Say, S, = K C p,R. Since p, is a central idempotent of
the ring 7', we conclude that p,R(1 — p.) = 0 and so Lemma 2.3 implies that
K is a right R-module, and right R-modules S, and K are isomorphic. As
S,NK Ce,RN(1—e)R =0, we get a contradiction with square freeness of R.

Assume that @ is not an essential right ideal of the ring p,R. Then there
exists a nonzero right ideal K of p,R such that Q N K = 0. Clearly, @ is a
right primitive ideal of p,R and so (3) implies that ) is a maximal right ideal
of p,R (and p,R/Q is a skew field). Therefore p,R = @Q ) K. Clearly right
poR-modules S, and K are isomorphic, which is impossible by the above result.
Therefore @ is an essential right ideal of the ring p,, R and so the first statement
of the lemma is proved.

Recall that u =1 —¢e and e = ZﬁEQ eg. Since p, € T and wu is the identity
of the ring T, we conclude that e,p, = 0 = pe, for all @ € Q and w € Q.
Further, p, Re, C (1—e)Re. Since (1—e)Re = 0 by (17), we see that p,Re, =0
and so the second statement of the lemma is proved.

Now let o € 2\ {w}. Suppose that e, Rp, # 0. Recall that e, R = e, Re,, +
Sa by (13). Since e,p.. = 0, we conclude that

Sopu # 0.
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If () is defined, then S,e,(a) = Sa by Lemma 2.8(1). Since e, (n)p. = 0, we
get a contradiction Sop, = 0. Therefore o(«) is not defined forcing o € Q.
Since @ # w, pap. = 0. On the other hand S,p, = S, by the first statement of
the lemma, forcing a contradiction S,p, = 0. Thus e, Rp, = 0 and the lemma
is proved. O

A sequence {wy,ws, ..., w,} C Qis called a chainif w; € Q' and o(w;) = wity

foralli=1,2,...,n — 1. A chain is called maximal if it is not a proper subset
of any other chain. Clearly a chain {wq,ws,...,w,} is maximal if and only if
both w, € Q" and wy; ¢ o(). Recall that o : Q@ — Q is an injective map
by Lemma 2.9, €’ does not contain cycles by our assumption and |Q| < oo by
Lemma 2.12. Therefore Q is a disjoint union of maximal chains.

Lemma 2.15 Let {wy,ws,...,wy} C Q be a mazimal chain and let w = p,, +
S ew,. Then w is a central idempotent of the ring R and the ring wR is of
the form Go(Dy,..., Dy, A V4, ... V3.

Proof. Set w’ = I, e,, and note that w = p,,, + w'. It follows from
both (4) and Lemma 2.14(2) that w is sum of pairwise orthogonal idempotents
and so w is an idempotent. Assume that wR(1 —w) # 0. Then by Lemma 2.5,
wR(1l — w) = Zueﬂu-_u_..,- Sa. Given o € §2y,1—w, the inclusion S, C e R
implies that e,S, = S,. According to Lemma 2.14(3), p., e, = 0 and so
Pw,Sa = 0 as well. Since Sy C wR(1 — w), wS, = Sa (and S,(1 — w) = S,)
forcing w’S, = S,. Taking into account (4), we conclude that a = w; for some
1<i<mn. Ifi<n,then Lemma 2.8(1) yields

So = Saea(w,-) = Sa(l— w)ea(“-'r') =0,

a contradiction. Therefore i = n. Note, that S,p,, = S, by the choice of p,’s
(see Lemma 2.14). Therefore

So = Sor'pw,, = Sa(l — L‘J)pw“ =0,

a contradiction. Hence wR(1 — w) = 0.

Next, suppose that (1 —w)Rw # 0. Again applying Lemma 2.5, we see that
(1—w)Rw = ZQEQI—NI.H: S.. Since e, (1 —w) = 0, we conclude that e, S, =0
forall 1 <7< n and e € Qj_y,4. Recalling that e, S, = S, we infer that

o d {wy,wa, ... ,wnt.

Next, both the injectivity of o and the maximality of the chain {wy,wa, ... ,w,}
imply that o(a) ¢ {wy,ws,...,w,} or o(a) is not defined. Hence Lemma 2.8
implies that e, Re,, =0 for all 1 <4 < n and so S,w’ = 0. On the other hand,
S. C (1 —w)Rw and so Saw = S, forcing

Sapw,. = erv
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According to Lemma 2.14(3), e, Rp,,, = 0 forcing S,p., = 0, a contradiction.
Therefore w is a central idempotent.

Set v; = e.,, t = 1,2,...,n, Uny1 = po, and note that Lemmas 2.8 and
2.14 together imply that {v; | 1 <i < n+ 1} is a family of pairwise orthogonal
idempotents such that

viRv; #0 ifand only if i = j,ori <mand j =i+ 1. (24)

Set A = vy 1 Rvpyy, D = v;Rv; and V; = v;Ru;yy for all @ = 1,2,...,n,
According to Lemma 2.14(1), A is a right continuous right 7-ring with identity
vps1 all of whose idempotents are central, and V,, is a simple injective right
A-module; moreover, r(A; V,,) is an essential ideal of the ring A, the factor ring
A/r(A; V) is a skew field, and the right A-module V;, is not embedable into
A. By Lemma 2.7, R = R/r(R;V,) is a skew field and dim({V,,}5) = 1. Note
that r(A; Vi) = r(R; V) NA and A = v, 41 Rvpt1 = vp41 R is a right ideal of
R. Since Vyvny1 = Vi, we conclude that the image A = A/r(A;V,,) of Ain R
is a nonzero right ideal in R and so A = R forcing dim({V,,}%x) = 1.

Next, Lemma 2.7 implies that each D; is a skew field, while Lemma 2.8(3)
vields that

dim({V;}p,,,) =1foralli=1,2,...,n—1.

It follows from (24) that
wR = {|_'J-E;__{I’U,'R?Jj =D ODy®.. D, ADVIOVoD...0OV,. (25)

Set G = Gny1(Dyy. .., Dp, A VA, ..., V,). Given

dy EDl_.dQEDQ,...,d—,leD,“(SEA, v EVi, 1 € Vo, ...,v, €V,

we denote by [dy,...,dn,6,v1,..., vy the matrix
dl (&5}
da  vo
dy wvs
' €G.
dn Un
b}
One can easily check that
[d1,...,dn,6,01,...,05][d},...,d;,, 8 v1,...,0p] =
[didy,. .. dnd,, 88 d1v] +v1ds, ... dn_1V5_1 + Vn_1d,, Va6’ + dnvy,] (26)
We now define a map f: wR — G by the rule
fldy+...+dp+8+v1+...+v,) =[d1,...,dn,6,01,...,0,)
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for all dy € Dq,...,d, € D,,6 € Ajvy € Vq,...,v, € V,,. It follows from (25)
that f is a bijective additive map. Taking into account (26) we see that f is an
isomorphism of rings. This completes the proof. O

Gathering together all direct summands of the ring R determined by max-
imal chains, we reduce the proof to the case when = () and this case has
already been considered. Thus the ring R has the decomposition described in
Theorem 1.2. Since the direct sum of finitely many of right continuous right
m-rings is again a right continuous right w-ring, the rest of the Theorem 1.2
follows from the following result.

Proposition 2.16 Let R = G, (Dy,...,Dn, A Vi, ..., V,,). Then R is a right
continuous right w-ring.

Proof. Let 1 < i < n+ 1 and let e; be the matrix whose (i,7)-entry is
equal to 1 and all the other ones are equal to 0. It is easy to see that e; Rejqq
is a minimal right ideal of R while e;R/e;Re;j;; is a simple module for all
J = 1,2,...,n. Moreover, e;Re;; is the only proper nonzero submodule of
e; 2. Note that

e;Re; #0ifand only if i = j,ori <m and j =i+ 1. (27)

Given a right ideal K of the ring A, we set K to be the set of all matrices whose
(n + 1,n + 1)-entries are from K and all the other ones are equal to 0. Clearly
K is a right ideal of R. Moreover, if U is a right ideal of IR, then

there exists a right ideal K of A such that Ue,+; = K. (28)
Given 1 < i < n and a right ideal K of A, we claim that
e;R and K (e;Re;4, and K) are are mutually injective. (29)

Indeed, let U be a submodule of K. By (28), U = V for some right ideal V' of
A contained in K. First assume that ¢ < n. Since Ue,y; = U and Ke,, 1 = K
while ¢; Re,, 11 = 0 by (27),

Hom({e;Reis1}r, Kr) =0 and Home(Ug, e;Rg) = 0.

As e;Re; 1 is the only nonzero proper submodule of ¢; R, (29) is proved in this
case. Assume now that i =n. Let f € H01n({e,1Ren+l};{,af€'). Then f induces
a homomorphism of A-modules f’: V,, — K C A. Since right A-modules V,,
and A/r(A; V,) are isomorphic and A/r(A; V,) is not embedable into A by our
assumption, we conclude that f' = 0 forcing f = 0 and Hom({e,, Re,,+1} i, I’{) =
0. As e, Re, 1 is the only proper nonzero submodule of e, R, we see that K
is e, R-injective. Now let g : Up — e, R where U is a submodule of the right
R-module K. Then

Q(U) = g(Uen-}—l) — Q(U)Bn—i-l g criReu—‘rl'
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Since V;, is an injective right A-module, e, Re, 1, is an injective ¢, -module.
Therefore there exists h : Ke, ., r — (énReény1)e, ., r such that hly = g. As
ent1 (1 — e,41) = 0, Lemma 2.3(6) implies that h : Kp — (enReni1)r.
Therefore e, R is K- -injective.

Given 1 <14,j7 <n with i # j, we claim that

e;R and e; R (e;Re;; and e;R) are are mutually injective. (30)

Indeed, recall that e; Re;; is the only proper nonzero submodule of e; R. Let f :
(ejRe_‘j+1);{ =, e;R (OI‘ f & (ejRejH)H = (eiRe£+1)R). Since j —7‘9 '.’:, (27) yiclds
that e; Re; ;. # 0if and only if j = i—1. In this case e; Re; 11 = e; Re;. Therefore
e;iRe;j41 C e;Re; in both cases. We now have f(e;Re;4+1) = f(ejRejq1)ejrr C
eiRej 1 C e;Re;. In order to show that f = 0, it is now enough to show that
e;Re; contains no nonzero right ideals of R. Since e;Re; contains no nonzero
right ideals of R, we conclude that f(e;jRej;1) = 0. Therefore f = 0 and so
(30) is proved.

Recall that A, is a continuous module all of whose submodules are quasi-
continuous. It now follows from Lemma 2.3(6) that Ap = €n41 1% 1s a continuous
module all of whose submodules are quasi-continuous. Next, both e¢; R and
e;Re; ;1 are continuous R-modules because they are uniform of finite length.
Since R = ©7*'e; R and ¢; R and e; R are mutually injective by (29) and (30),
(15, Theorem 3.16] yields that Rp is continuous.

Let U be a right ideal of R. In order to complete the proof, it is enough
to show that Ug is quasi-continuous. In view of [15, Proposition 2.7], we may
assume without loss of generality that U C., R. Then e;Re;+1 C U for all
i=1,2,...,n. Set W =37 e;Re;4 and note that W C U. Smw the factor
ring R/W is isomorphic to the ring (b7, D,) & A and U/W is a right ideal of
R/W, we conclude that there exist a partition I, .J of the set {1,2,...,n} and
a right ideal K of A such that

U = (DiereiR) ® (Djeqe;Rejr1) @ K.
Now [15, Theorem 2.3], (29) and (30) together imply that Up is quasi-continuous,
completing the proof. 0O
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