Communications in Algebra
(2004)

THE STRUCTURE OF RIGHT CONTINUOUS RIGHT π -RINGS.

K.I. Beidar

Department of Mathematics,
National Cheng-Kung University, Tainan, Taiwan
e-mail: beidar@mail.ncku.edu.tw

and

S.K. JAIN

Department of Mathematics, Ohio University, Athens, Ohio, USA e-mail: jain@math.ohiou.edu

Abstract

Recently the Jain, López-Permouth and Syed classified indecomposable non-local right continuous right π -rings. In the present article we describe the structure of right continuous right π -rings.

1991 Mathematics Subject Classification: 16W10,16W25,16R50.

1 Introduction

Throughout all rings have unity $(\neq 0)$ and all modules are unital. Given a ring R and a right R-module M, we denote by Soc(M) and J(R) the socle of M and the Jacobson radical of R respectively. Given a nonempty subset S of R, we set

$$r(R; S) = \{r \in R \mid Sr = 0\}$$
 and $\ell(R; S) = \{r \in R \mid rS = 0\}.$

We denote by E(M) the injective hull of M. For a submodule N of a module M, the notations $N \subseteq_e M$ and $N \subseteq^{\oplus} M$ respectively denote that N is an essential submodule of M and N is a direct summand of M. Recall that a *closure* of N in M is a maximal essential extension of N in M. The submodule N is said to be *closed* in M if it has no proper essential extensions in M. Given a module L, M is said to be L-injective if for any submodule $K \subseteq L$, every $\alpha \in \operatorname{Hom}(K_R, M_R)$ is the restriction of some $\beta \in \operatorname{Hom}(L_R, M_R)$.

Consider now the following conditions for a module M.

- (C1) For every submodule N of M there exists a direct summand L of M with $N \subseteq_e L$.
- (C2) If a submodule N of M is isomorphic to a direct summand of M then N itself is a direct summand of M.
- (C3) If A and B are direct summands of M with $A \cap B = 0$ then $A \oplus B$ is a direct summand of M.

A module M is called *continuous* (respectively, *quasi-continuous*) if it satisfies (C1) and (C2) (respectively, (C1) and (C3)).

It is well-known that a module M is quasi-continues if and only if

$$eM \subseteq M$$
 for every idempotent $e \in \operatorname{End}(E(M)_R)$. (1)

A ring R is said to be a right π -ring if every right ideal in R is a quasi-continuous module.

Let n be an integer with $n \geq 1$, let D_1, D_2, \ldots, D_n be skew fields and let Δ be a right continuous right π -ring, all of whose idempotents are central, with essential ideal P such that Δ/P is a skew field and the right Δ -module Δ/P is not embedable into Δ_{Δ} . Next, let V_i be D_i - D_{i+1} -bimodule such that

$$\dim(\{V_i\}_{D_{i+1}}) = 1$$
 for all $i = 1, 2, \dots, n-1$,

and let V_n be a D_n - Δ -bimodule such that $V_nP=0$ and $\dim(\{V_n\}_{\Delta/P})=1$. We denote by $G_n(D_1,\ldots,D_n,\Delta,V_1,\ldots,V_n)$ the ring of $(n+1)\times(n+1)$ matrices of the form

$$\begin{pmatrix}
D_1 & V_1 & & & & & \\
& D_2 & V_2 & & & & \\
& & D_3 & V_3 & & & \\
& & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & D_n & V_n \\
& & & & \Delta
\end{pmatrix}$$

where it is understood that $V_iV_j = 0$ for all i, j.

Recall that a nonzero right R-module M is called *square free* if it does not contain the direct sum of two isomorphic nonzero submodules. A ring R is said to be square free if the module R_R is square free.

The study of rings, for which every right ideal is quasi-injective (known as right q-rings), was initiated by Jain, Mohamed and Singh [10] in 1969. Since then such rings were studied by a number of authors [1, 2, 5, 6, 7, 8, 11, 12, 13, 14]. Recently Jain, López-Permouth and Syed [9] extended this line of research by studying right π -rings. They described the structure of indecomposable non-local right continuous right π -rings and obtained the following useful general result.

Theorem 1.1 ([9, Theorem 2.6]) A right π -ring R is the direct sum of a semisimple Artinian ring and a right square free right π -ring.

The goal of the present paper is to describe the structure of right continuous right π -rings.

We show that every ring of the form $G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n)$ is a right continuous right π -ring (Proposition 2.16). Our main result, describing the structure of right continuous right π -rings, is the following theorem.

Theorem 1.2 A ring R is right continuous right π -ring if and only if R is the direct sum of finitely many rings of the form $G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n)$, finitely many indecomposable non-local right continuous right π -rings, and a right continuous right π -ring all of whose idempotents are central.

2 Proof of the Main Results

First we show that a right continuous right π -ring R has the form described in Theorem 1.2. We conclude from Theorem 1.1 that, proving Theorem 1.2, we may assume that the ring in question is a square free right continuous right π -ring.

Throughout this paper R is a square free right continuous right π -ring.

Because R is right continuous and square free, it follows at once from [15, Lemma 3.4, Proposition 3.5 and Theorem 3.11] that

$$R/J(R)$$
 is a strongly regular right continuous ring. (2)

Furthermore, note that

if
$$P$$
 is a right primitive ideal of R , then R/P is a skew field, (3)

because R/J(R) is strongly regular, and so $R/P \cong (R/J(R))/(P/J(R))$ is a primitive strongly regular ring; thus R/P is a skew field.

The following result follows at once from [9, Lemma 3.2].

Lemma 2.1 Let S be a minimal right ideal of R and let e be an idempotent of R such that $S \subseteq_e eR$. Suppose that $eR(1-e) \neq 0$. Then eRe is a skew field and eR(1-e) is the only proper submodule of eR. In particular, eR(1-e) = S.

Given two right R-modules M and N, we set

$$\operatorname{Tr}_N(M) = \sum_{f \in \operatorname{Hom}(M_R, N_R)} f(M).$$

Combining [9, Lemma 2.3(a)] with [9, Theorem 3.5] we get at once

Lemma 2.2 Let A and B be two right ideals of the ring R such that $A \cap B = 0$. Then $\operatorname{Tr}_B(A)$ is a direct sum of finitely many of minimal right ideals of R.

Our plan of proving Theorem 1.2 consists of several steps. First, we show that the ring R contains a finite set of nilpotent minimal right ideals that determines a direct summand R_1 of R where R_1 is the direct sum of indecomposable right continuous right π -rings. Furthermore, by setting $R = R_1 \oplus R'$, we shall show that the ring R' contains finitely many nilpotent minimal right ideals of R', determining a direct summand R_2 of R', where R_2 is the direct sum of rings of the form $G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n)$. Finally, putting $R = R_1 \oplus R_2 \oplus R_3$, we complete the proof by showing that R_3 is a right continuous right π -ring all of whose idempotents are central.

We continue with the following two general statements.

Lemma 2.3 Let A be a ring, let M and N be two right A-modules and let u be a nonzero idempotent of A. Suppose that uA(1-u)=0, Mu=M and Nu=N. Set B=uA. Then:

- (1) B is a ring with identity u and B = uA = uAu.
- (2) Both M and N are right B-modules canonically.
- (3) Every submodule of M_B is a submodule of M_A .
- (4) Every right ideal of the ring B is a right ideal of the ring A.
- (5) M_A is simple if and only M_B is so.
- (6) $\operatorname{Hom}(M_B, N_B) = \operatorname{Hom}(M_A, N_A)$.
- (7) $M_B \cong N_B$ if and only if $M_A \cong N_A$.
- (8) If A is a right continuous right π -ring, then so is B.
- (9) If $B \oplus M$ is a quasi-continuous right A-module, then M_B is injective.

Proof. Clearly B = uA = uAu + uA(1-u) = uAu and so u is the identity of the ring B. Since Mu = M, mu = m for all $m \in M$ and whence M is a right B-module. Analogously N is a right B-module. Given a submodule L of M_B , we have that L = LB = LuA and so L is a submodule of M_A . Both (4) and (5) follow from (3) at once. Next, the inclusion $\text{Hom}(M_B, N_B) \supseteq \text{Hom}(M_A, N_A)$ is obvious. Let $f: M_B \to N_B$. Given $m \in M$ and $a \in A$, we have that $ua \in B$ and m(1-u) = 0. Therefore

$$f(ma) = f(m\{ua + (1 - u)a\}) = f(m\{ua\}) = f(m)\{ua\}$$
$$= f(m)\{ua + (1 - u)a\} = f(m)a$$

forcing $f \in \text{Hom}(M_A, N_A)$ and so $\text{Hom}(M_B, N_B) = \text{Hom}(M_A, N_A)$. Clearly (7) follows from (6).

Suppose that A is a right continuous right π -ring. Then (4) implies that B is also right continuous ring right π -ring.

Finally, assume that $B \oplus M$ is a quasi-continuous A-module. Then M_A is B_A -injective by [15, Proposition 2.10]. It now follows at once from (6) that M_B is an injective module. \square

Lemma 2.4 Let $\{L_{\gamma} \mid \gamma \in \Gamma\}$ be a family of simple right A-modules, let $M = \bigoplus_{\gamma \in \Gamma} L_{\gamma}$ and let K be a submodule of M. Suppose that M is square free. Then there exists a subset $\Omega \subseteq \Gamma$ such that $K = \bigoplus_{\omega \in \Omega} L_{\omega}$.

Proof. It is well-known that there exists a subset $\Lambda \subseteq \Gamma$ such that $M = K \oplus L$ where $L = \bigoplus_{\lambda \in \Lambda} L_{\lambda}$. Let $\pi : M \to L$ be the canonical projection of modules and set $\Omega = \Gamma \setminus \Lambda$. Given $\omega \in \Omega$, we have that $L_{\omega} \cap L = 0$. As L_{ω} is simple, either $L_{\omega} \cong \pi(L_{\omega})$ or $\pi(L_{\omega}) = 0$. Since M is square free, we conclude that $\pi(L_{\omega}) = 0$ and so $L_{\omega} \subseteq \ker(\pi) = K$. Therefore $\bigoplus_{\omega \in \Omega} L_{\omega} \subseteq K$. Clearly $(\bigoplus_{\omega \in \Omega} L_{\omega}) \oplus L = M$ and so the equality $K \oplus L = M$ forces $K = \bigoplus_{\omega \in \Omega} L_{\omega}$. \square

In what follows S_{γ} , $\gamma \in \Gamma$, are all homogeneous components of $\operatorname{Soc}(R)$ and $e_{\gamma} \in R$, $\gamma \in \Gamma$, are idempotents such that $S_{\gamma} \subseteq_{e} e_{\gamma}R$ for all $\gamma \in \Gamma$. Since $\sum_{\gamma \in \Gamma} S_{\gamma} = \bigoplus_{\gamma \in \Gamma} S_{\gamma}$ and each S_{γ} is an essential submodule of $e_{\gamma}R_{R}$, it is easy to see that $\sum_{\gamma \in \Gamma} e_{\gamma}R = \bigoplus_{\gamma \in \Gamma} e_{\gamma}R$. It now follows at once from [15, Lemma 3.8] that we may assume without loss of generality that

$$e_{\alpha}e_{\beta} = 0 \text{ for all } \alpha, \beta \in \Gamma \text{ with } \alpha \neq \beta.$$
 (4)

Given $\gamma \in \Gamma$, we note that

$$S_{\gamma}$$
 is both an ideal and a minimal right ideal of R . (5)

Indeed, S_{γ} is a sum of isomorphic minimal right ideals and because R is a square free, we conclude that S_{γ} is a minimal right ideal of R. As a homogeneous component of the socle of a ring, S_{γ} is an ideal of R.

Since $S_{\alpha} \subseteq_{e} e_{\alpha} R$, we conclude that

$$e_{\alpha}R$$
 is a uniform module for all $\alpha \in \Gamma$. (6)

Therefore

given a central idempotent
$$e$$
 of R , either $ee_{\alpha} = 0$ or $ee_{\alpha} = e_{\alpha}$, (7)

because $e_{\alpha}R = (e_{\alpha}e)R \oplus [e_{\alpha}(1-e)R]$ and so either $e_{\alpha}e = 0$ or $e_{\alpha}(1-e) = 0$. We set

$$\Omega = \{ \gamma \in \Gamma \mid e_{\gamma} \text{ is not central} \}.$$

Lemma 2.5 Let u, v be orthogonal idempotents of R such that $uRv \neq 0$. Then there exists a finite subset $\Omega_{u,v} \subseteq \Omega$ such that $uRv = \bigoplus_{\omega \in \Omega_{u,v}} S_{\omega} \subseteq \operatorname{Soc}(R)$. In particular, uRv is an ideal of R. Moreover uRvRu = 0 = vRuRv.

Proof. Set A = vR and B = uR. It is well-known that every homomorphism $A_R \to B_R$ is given by the left multiplication by an element of uRv. Therefore $\text{Tr}_B(A) = uRvR$ and so Lemma 2.2 yields that uRvR is direct sum of finitely many minimal right ideals of R. Since R_R is square free, it now follows from Lemma 2.4 that there exists a finite subset $\Omega_{u,v} \subseteq \Gamma$ such that $uRvR = \bigoplus_{\omega \in \Omega_{u,v}} S_\omega \subseteq \text{Soc}(R)$.

Now consider the right ideal uRvRuR. We already know that $vRuR = \sum_{\omega \in \Omega_{v,u}} S_{\omega} \subseteq vR$. Given $\omega \in \Omega_{v,u}$ and $r \in uRv$, either $rS_{\omega} = 0$, or $rS_{\omega} \cong S_{\omega}$ because S_{ω} is a minimal right ideal. The latter case is ruled out by the facts that $rS_{\omega} \cap S_{\omega} \subseteq uR \cap vR = 0$ and that R is square free. Therefore $rS_{\omega} = 0$ for all $\omega \in \Omega_{v,u}$ and $r \in uRv$ forcing uRvRuR = 0. In particular, uRvRu = 0. Analogously, vRuRv = 0. Note that v and v0 are orthogonal idempotents and so v0 and v1 are orthogonal idempotents and so v1 are v2 are orthogonal. Since v3 are see that v4 are orthogonal. Therefore

$$\sum_{\omega \in \Omega_{u,v}} S_{\omega} = uRvR = uRvRv + uRvR(1-v) = uRvRv = uRv.$$

It now follows from (5) that uRv is an ideal of R.

Let $\omega \in \Omega_{u,v}$ and assume that e_{ω} is central. By (6), $e_{\omega}R$ is a uniform module. As e_{ω} is central,

$$(e_{\omega}uR)\cap(e_{\omega}vR)\subseteq(uR)\cap(vR)=0.$$

Therefore either $e_{\omega}u=0$ or $e_{\omega}v=0$. Say, $e_{\omega}v=0$. We have $S_{\omega}\subseteq uRv$ and

$$S_{\omega} = e_{\omega} S_{\omega} \subseteq e_{\omega} u R v = u R(e_{\omega} v) = 0,$$

a contradiction. Therefore e_{ω} is not central and so $\omega \in \Omega$ forcing $\Omega_{u,v} \subseteq \Omega$. The proof is thereby complete. \square

If $\Omega = \emptyset$, the Lemma 2.5 yields that eR(1 - e) = 0 = (1 - e)Re for any $e = e^2 \in R$ (because $\Omega_{e,1-e} = \emptyset = \Omega_{1-e,e}$) and so all idempotents are central. In this case there is nothing to prove. Therefore we may assume without loss of generality that $\Omega \neq \emptyset$.

Lemma 2.6 Let n be a positive integer, let $\omega_1, \omega_2, \ldots, \omega_n \in \Omega$ and let $u = e_{\omega_1} + e_{\omega_2} + \ldots + e_{\omega_n}$. Suppose that uR(1-u) = 0. Then u is a central idempotent.

Proof. Set
$$u_i = e_{\omega_i}$$
 and $T_i = S_{\omega_i}$, $i = 1, 2, ..., n$. By Lemma 2.3(1),

$$uRu = uR. (8)$$

Assume that (1-u)Ru = 0. Then the equality uR(1-u) = 0 implies that u is central and there is nothing to prove. Therefore we may assume without loss of generality that $(1-u)Ru \neq 0$.

We set $Q = \sum_{i=1}^{n} u_i R u_i$ and $I = \sum_{i \neq j} u_i R u_j$. Since $u = u_1 + u_2 + \ldots + u_n$, we have

$$uRu = Q + I. (9)$$

We claim that

Q is the direct sum of local rings $u_i R u_i$, i = 1, 2, ..., n; I is a nilpotent ideal of the ring uRu and $J(uRu) = \sum_{i=1}^{n} J(u_i R u_i) + I$; $(uRu)/J(uRu) = \bigoplus_{i=1}^{n} (u_i R u_i)/J(u_i R u_i)$. (10)

Indeed, since $u_i u_j = 0$ for all $i \neq j$ by (4), Q is the direct sum of rings $u_i R u_i$, i = 1, 2, ..., n. It follows from both (6) and [15, Proposition 2.7] that $u_i R$ is an indecomposable continuous R-module. Since, $u_i R u_i = \operatorname{End}(u_i R_R)$, [15, Proposition 3.5] yields that $(u_i R u_i)/J(u_i R u_i)$ is von Neumann regular. As $u_i R_R$ is indecomposable, [15, Lemma 3.8] now yields that $(u_i R u_i)/J(u_i R u_i)$ has no nontrivial idempotents and so $u_i R u_i$ is a local ring. Therefore Q is the direct sum of local rings $u_i R u_i$, i = 1, 2, ..., n.

By Lemma 2.5, each $u_i R u_j$ (with $i \neq j$) is an ideal of the ring R. Since $(u_R u_j)^2 = 0$, we see that I, being a sum of nilpotent ideals, is also an nilpotent ideal of R.

Obviously $I \subseteq J(uRu)$, $Q + I = Q \oplus I$ and so the factor ring (uRu)/I is canonically isomorphic to $Q = \bigoplus_{i=1}^n u_i Ru_i$. The result now follows from the obvious fact that $J(Q) = \bigoplus_{i=1}^n J(u_i Ru_i)$. Therefore (10) is proved.

Recall that each $T_i \subseteq u_i R \subseteq uR = uRu$ by (8) and so $T_i u = T_i$. Therefore

each
$$T_i$$
 is a simple right uRu -module (11)

by both (5) and Lemma 2.3(5).

By (10), (uRu)/J(uRu) is the direct sum of skew fields $(u_iRu_i)/J(u_iRu_i)$, and so there are exactly n pairwise non-isomorphic simple right uRu-modules. On the other hand we know that each T_i is a simple right uRu-module. Since $\{T_i\}_R \not\cong \{T_j\}_R$ for $i \neq j$, it follows from Lemma 2.3(7) that $\{T_i\}_{uRu} \not\cong \{T_j\}_{uRu}$ for $i \neq j$ and whence

every simple right
$$uRu$$
-module is isomorphic to some T_i . (12)

Recall that $(1-u)Ru \neq 0$ by our assumption. According to Lemma 2.5, $(1-u)Ru = \sum_{\omega \in \Omega_{1-u,u}} S_{\omega}$. Clearly each S_{ω} is a right uRu-module and so it is a simple right uRu-module by both (5) and Lemma 2.3(5). According to (12), $\{S_{\omega}\}_{uRu} \cong \{T_i\}_{uRu}$ for some $1 \leq i \leq n$, and whence Lemma 2.3(7) implies that $\{S_{\omega}\}_{R} \cong \{T_i\}_{R}$. Finally, $S_{\omega} \cap T_i \subseteq (1-u)R \cap uR = 0$, contradicting square freeness of R. Thus (1-u)Ru = 0 and the proof is completed. \square

Given $\omega \in \Omega$, it follows from Lemma 2.6 that $e_{\omega}R(1-e_{\omega}) \neq 0$ and so Lemma 2.1 yields that

$$e_{\omega}Re_{\omega}$$
 is a skew field and $S_{\omega} = e_{\omega}R(1 - e_{\omega})$ for all $\omega \in \Omega$. (13)

In particular, $S_{\omega}^2 = 0$, which explains our attention to nilpotent minimal right ideals of R.

Lemma 2.7 Let $\omega \in \Omega$. Then the factor ring $\overline{R} = R/r(R; S_{\omega})$ is a skew field, $\dim(\{S_{\omega}\}_{\overline{R}}) = 1$ and $\overline{R}_R \cong \{S_{\omega}\}_R$. Morover,

$$\ell(R; S_{\omega}) = (1 - e_{\omega})Re_{\omega} + e_{\omega}R(1 - e_{\omega}) + (1 - e_{\omega})R(1 - e_{\omega})$$

and $R/\ell(R; S_{\omega}) \cong e_{\omega} Re_{\omega}$ is a skew field. In particular, S_{ω} is a completely reducible left R-module.

Proof. Set $e=e_{\omega}$ and $S=S_{\omega}$. Since S is a simple right R-module by (5), r(R;S) is a primitive right ideal of R and so \overline{R} is a skew field by (3). We see that S is both a right vector space over \overline{R} and a simple right module. Therefore $\dim(S_{\overline{R}})=1$. Take any $0\neq x\in S$. Then the map $\varphi:R\to S$, $r\mapsto xr$, is an epimorphism. Obviously $\ker(\varphi)\supseteq r(R;S)$. Since \overline{R} is a skew field, $\ker(\varphi)=r(R;S)$ and so φ induces an isomorphism of R-modules \overline{R} and S

Since $S \subseteq eR$, eS = S. It now follows from both Lemma 2.5 and (13) that (1-e)ReS = (1-e)ReR(1-e) = 0 and so

$$P = (1 - e)Re + eR(1 - e) + (1 - e)R(1 - e) \subseteq \ell(R; S).$$

Clearly P + eRe = R. By (13), eRe is a skew field and so $eRe \cap \ell(R; S) = 0$; otherwise $\ell(R; S) = R$ which is impossible. Since R = eRe + P and $P \subseteq \ell(R; S)$, we conclude from the modular law that $\ell(R; S) = P$. Therefore $R/P \cong eRe$ and so R/P is a skew field. It is now clear that S is a completely reducible left R/P-module. That is to say S is completely reducible left R-module. This completes the proof. \square

Lemma 2.8 Let $\omega \in \Omega$. Suppose that there exists $\gamma \in \Gamma \setminus \{\omega\}$ with $e_{\omega}Re_{\gamma} \neq 0$. Further, let w be an idempotent of R such that $e_{\omega}w = we_{\omega} = e_{\gamma}w = we_{\gamma} = 0$. Then

- (1) $S_{\omega} = e_{\omega} R e_{\gamma}$ and $e_{\omega} R w = 0$; in particular, $e_{\omega} R e_{\alpha} = 0$ for all $\alpha \in \Gamma$ with $\alpha \notin \{\omega, \gamma\}$.
- (2) $\gamma \in \Omega \setminus \{\omega\}.$
- (3) $e_{\gamma}Re_{\gamma}$ is a skew field, $\{S_{\omega}\}_{R} \cong \{(e_{\gamma}R)/S_{\gamma}\}_{R}$ and $\dim(\{S_{\omega}\}_{e_{\gamma}Re_{\gamma}}) = 1$.

Proof. (1) Set $e = e_{\omega}$ and $S = S_{\omega}$. Since $ee_{\gamma} = 0 = e_{\gamma}e$ by (4), Lemma 2.5 implies that eRe_{γ} is an ideal of R and $eRe_{\gamma} \subseteq \operatorname{Soc}(eR) = S$ forcing $eRe_{\gamma} = S$. Therefore

$$Se_{\gamma} = S$$
 and $S(1 - e_{\gamma}) = 0.$ (14)

It follows at once from (14) that Sw = 0. Suppose that $eRw \neq 0$. Then Lemma 2.5 yields that $eRw \subseteq \operatorname{Soc}(eR) = S$ and so eRw = S contradicting Sw = 0. Therefore eRw = 0. Given $\alpha \in \Gamma \setminus \{\omega, \gamma\}$, $e_{\omega}e_{\alpha} = e_{\alpha}e_{\omega} = e_{\gamma}e_{\alpha} = e_{\alpha}e_{\gamma} = 0$ by (4) and so $eRe_{\alpha} = 0$ by the above result (with $w = e_{\alpha}$).

- (2) Indeed, assume to the contrary that $\gamma \in \Gamma \setminus \Omega$. Then e_{γ} is a central idempotent by the definition of Ω . Next, since $\gamma \neq \omega$, $ee_{\gamma} = 0$ by (4) and so $S = eRe_{\gamma} = ee_{\gamma}R = 0$, a contradiction. Thus $\gamma \in \Omega \setminus \{\omega\}$.
- (3) Since $\gamma \in \Omega$, (13) implies that $e_{\gamma}Re_{\gamma}$ is a skew field, $S_{\gamma} = e_{\gamma}R(1 e_{\gamma})$ and $e_{\gamma}R = e_{\gamma}Re_{\gamma} + S_{\gamma}$. By (14), $SS_{\gamma} = Se_{\gamma}R(1 e_{\gamma}) \subseteq S(1 e_{\gamma}) = 0$. Next, pick $0 \neq s \in S$. Since $se_{\gamma} = s$,

$$S = sR = se_{\gamma}R = s(e_{\gamma}Re_{\gamma} + S_{\gamma}) = se_{\gamma}Re_{\gamma}$$

and so we conclude that $\dim(S_{e_{\gamma}Re_{\gamma}})=1$ and $S_R\cong\{(e_{\gamma}R)/S_{\gamma}\}_R$ via $x\mapsto sx,$ $x\in e_{\gamma}R$. The proof is completed. \square

Let $\omega \in \Omega$ be as in Lemma 2.8. It follows from Lemma 2.8(1) that there exists a uniquely determined element $\gamma \in \Omega$ satisfying (1)–(3). We denote γ by $\sigma(\omega)$. If $\omega \in \Omega$ and $e_{\omega}Re_{\alpha} = 0$ for all $\alpha \in \Gamma \setminus \{\omega\}$, then we shall say that $\sigma(\omega)$ is not defined. We now set

$$\Omega' = \{ \omega \in \Omega \mid \sigma(\omega) \text{ is defined} \} \text{ and } \Omega'' = \Omega \setminus \Omega'.$$

Lemma 2.9 The map $\sigma: \Omega' \to \Omega$ is injective.

Proof. Assume that there exist $\alpha, \beta \in \Omega'$ with $\alpha \neq \beta$ and $\sigma(\alpha) = \sigma(\beta)$. Set $\gamma = \sigma(\alpha)$. By Lemma 2.8(3), both $\{S_{\alpha}\}_R$ and $\{S_{\beta}\}_R$ are isomorphic to $\{(e_{\gamma}R)/S_{\gamma}\}_R$ and so $\{S_{\alpha}\}_R \cong \{S_{\beta}\}_R$ contradicting square freeness of R. Therefore σ is injective and the lemma is proved. \square

Lemma 2.10 Suppose that $|\Omega| = \infty$. Then there exist an infinite subset $\Delta \subseteq \Omega$ and mutually orthogonal idempotents u_{δ} , $\delta \in \Delta$, of R such that $S_{\delta}u_{\delta} \neq 0$ and $(u_{\delta}R) \cap S_{\delta} = 0$ for all $\delta \in \Delta$.

Proof. Let $\omega \in \Omega$. By (5), S_{ω} is a simple right R-module and so each $P_{\omega} = r(R; S_{\omega})$ is a primitive right ideal of R. Setting $P = \cap_{\omega \in \Omega} P_{\omega}$, we see that $J(R) \subseteq P$. Therefore (2) yields that both $\overline{R} = R/J(R)$ and R/P are strongly regular rings. Since $\{S_{\alpha}\}_{R} \not\cong \{S_{\beta}\}_{R}$ for all $\alpha \neq \beta \in \Omega$, Lemma 2.7 implies that $P_{\alpha} \neq P_{\beta}$ (otherwise $S_{\alpha} \cong R/P_{\alpha} = R/P_{\beta} \cong S_{\beta}$). Therefore $\{P_{\omega}/P \mid \omega \in \Omega\}$ is an infinite set of distinct primitive ideals of R/P and so R/P is not a semisimple Artinian ring. Therefore it contains an infinite family $\{v_i \mid i = 1, 2, \ldots\}$ of

nonzero pairwise orthogonal idempotents by [3, Corollary 2.16]. Since $v_i \neq 0$ and $P = \bigcap_{\omega \in \Omega} P_{\omega}$, there exists $\omega_i \in \Omega$ with $v_i \notin P_{\omega_i}/P$. Obviously each P_{ω_i}/P is a primitive (and so prime) ideal of the ring R/P. Recalling that R/P is strongly regular, we see that each v_i is central and so $v_i v_j = 0$ forces $v_j \in P_{\omega_i}/P$ for all $j \neq i$. In particular, $\omega_i \neq \omega_j$ for all $i \neq j$ and whence the set $\Delta = \{\omega_i \mid i = 1, 2, \ldots\}$ is infinite. For the sake of uniformity of notation we set $v_{\omega_i} = v_i$ for all $i = 1, 2, \ldots$ and note that $v_{\delta} \notin P_{\delta}/P$, $\delta \in \Delta$.

 $v_{\omega_i} = v_i$ for all $i = 1, 2 \dots$ and note that $v_{\delta} \notin P_{\delta}/P$, $\delta \in \Delta$. Since \overline{R} is von Neumann regular and $R/P = \overline{R}/\overline{P}$ (where $\overline{P} = P/J(R)$), it follows from [3, Proposition 2.18] that there exists a family $\{w_{\delta} \mid \delta \in \Delta\}$ nonzero pairwise orthogonal idempotents of the ring \overline{R} such that $w_{\delta} + \overline{P} = v_{\delta} \in R/P$ for all $\delta \in \Delta$. As $v_{\delta} \notin P_{\delta}/P$, $w_{\delta} \notin \overline{P_{\delta}}$ for all $\delta \in \Delta$, where $\overline{P_{\delta}} = P_{\delta}/J(R)$.

Next, (13) implies that $S_{\delta} = e_{\delta}R(1 - e_{\delta})$ for all $\delta \in \Delta$. In particular, $1 - e_{\delta} \notin P_{\delta}$. Let $r \mapsto \overline{r}$, $r \in R$, be the canonical projection $R \to \overline{R}$. We see that $\overline{1 - e_{\delta}} \notin \overline{P_{\delta}}$. Since \overline{R} is strongly regular and $\overline{P_{\delta}}$ is a prime ideal of \overline{R} , we conclude that $z_{\delta} = w_{\delta}\overline{1 - e_{\delta}} \notin \overline{P_{\delta}}$ for all $\delta \in \Delta$ and $\{z_{\delta} \mid \delta \in \Delta\}$ is a set of pairwise orthogonal idempotents.

It follows from [16, Theorem 4.9] that there exists a family of nonzero pairwise orthogonal idempotents $\{u_{\delta} \mid \delta \in \Delta\}$ such that $\overline{u_{\delta}} = z_{\delta}$ for all $\delta \in \Delta$. Therefore each $u_{\delta} \notin P_{\delta}$ and so $S_{\delta}u_{\delta} \neq 0$. Next, $\overline{u_{\delta}e_{\delta}} = \overline{u_{\delta}}\overline{e_{\delta}} = z_{\delta}\overline{e_{\delta}} = 0$ and so $u_{\delta}e_{\delta} \in J(R)$. Assume that $(u_{\delta}R) \cap S_{\delta} \neq 0$. Then $S_{\delta} \subseteq u_{\delta}R$. In particular, $u_{\delta}S_{\delta} = S_{\delta}$. Since $e_{\delta}S_{\delta} = S_{\delta}$, $(u_{\delta}e_{\delta})S_{\delta} = S_{\delta}$. On the other hand, S_{δ} is completely reducible left R-module by Lemma 2.7 and so $J(R)S_{\delta} = 0$ forcing $(u_{\delta}e_{\delta})S_{\delta} = 0$, a contradiction. Thus $(u_{\delta}R) \cap S_{\delta} = 0$. This completes the proof. \square

We now need the following result which is a special case of [9, Proposition 2.8]. Recall that a family $\{A_i \mid i \in I\}$ of right ideal of R is said to independent if $\sum_{i \in I} A_i = \bigoplus_{i \in I} A_i$.

Lemma 2.11 Suppose that $\{A_i \mid i \in I\}$ is an independent family of right ideals of R. If for each $i \in I$ there exists a right ideal B_i in R that is a homomorphic image of A_i with $A_i \cap B_i = 0$, then I is finite.

Lemma 2.12 The set Ω is finite.

Proof. Suppose that $|\Omega| = \infty$. Let $\Delta \subseteq \Omega$ and $\{u_{\delta} \mid \delta \in \Delta\}$ be as in Lemma 2.10. Set $A_{\delta} = u_{\delta}R$, $\delta \in \Delta$. Given $\delta \in \Delta$, $u_{\delta} \notin r(R; S_{\delta})$ and so $su_{\delta} \neq 0$ for some $0 \neq s \in S_{\delta}$. Therefore $S_{\delta} = su_{\delta}R = sA_{\delta}$ and so $\{S_{\delta}\}_{R}$ is a homomorphic image of $\{A_{\delta}\}_{R}$ for all $\delta \in \Delta$. Next, $A_{\delta} \cap S_{\delta} = 0$ by Lemma 2.10. Therefore Lemma 2.11 yields that $|\Delta| < \infty$, a contradiction. Thus Ω is finite and the proof is completed. \square

We have gathered enough information in order to construct the ring R_1 . To this end, we introduce the following concept. A sequence $\{\omega_1, \omega_2, \dots, \omega_n\}$ of elements of the set Ω' is called a cycle if $\sigma(\omega_n) = \omega_1$ and $\sigma(\omega_i) = \omega_{i+1}$ for all

 $i=1,2,\ldots,n-1$. It follows from Lemma 2.8(2) that any cycle in Ω contains more than one element. We continue with the following lemma.

Lemma 2.13 Let $\{\omega_1, \omega_2, \dots, \omega_n\}$ be a cycle and let $u = \sum_{i=1}^n e_{\omega_i}$. Then u is a central idempotent of R and uR is a non-local indecomposable right continuous right π -ring.

Proof. Given $1 \le i \le n$,

$$e_{\omega_i}(1-u) = (1-u)e_{\omega_i} = e_{\sigma(\omega_i)}(1-u) = (1-u)e_{\sigma(\omega_i)} = 0$$

by (4) and whence Lemma 2.8(1) (with w = 1 - u, $\omega = \omega_i$ and $\gamma = \sigma(\omega_i)$) implies that $e_{\omega_i}R(1-u) = 0$. Since $uR = \bigoplus_{i=1}^n e_{\omega_i}R$, we get uR(1-u) = 0 and so Lemma 2.6 implies that u is central. Clearly uR is a right continuous right π -ring.

Assume that uR is not an indecomposable ring. Then there exists a nonzero central idempotent v of the ring uR with $v \neq u$. Clearly v is a central idempotent of the ring R. It now follows from (7) that either $ve_{\omega_i} = e_{\omega_i}$ or $ve_{\omega_i} = 0$. Set $I = \{1 \leq i \leq n \mid ve_{\omega_i} = e_{\omega_i}\}$ and $J = \{1 \leq i \leq n \mid ve_{\omega_i} = 0\}$. Since vu = v and $u = \sum_{i=1}^n e_{\omega_i}$, we now get $v = \sum_{i \in I} e_{\omega_i}$ and $u - v = \sum_{j \in J} e_{\omega_j}$. Clearly there exists $1 \leq k \leq n$ such that either $k \in I$ and $k + 1 \in J$ or $k \in J$ and $k + 1 \in I$. Say, $k \in I$ and $k + 1 \in J$. By Lemma 2.8(3) there exists an epimorphism $e_{\omega_{k+1}}R \to S_{\omega_k}$. Therefore there exists a nonzero homomorphism $(u - v)R \to vR$ which is impossible because u - v and v are orthogonal central idempotents. Hence v is an indecomposable ring.

Finally, as we noted just before the lemma, any cycle in Ω contains more than one element. Therefore $n \geq 2$. It now follows from both (9) and (10) that the ring uR = uRu is not local. The proof is completed. \square

According to Lemma 2.12 the set Ω is finite and so $|\Omega'| < \infty$. Therefore, the set Ω' contains only finitely many cycles. It follows from the injectivity of the map σ (see Lemma 2.9), that distinct cycles are disjoint. Gathering together the direct summands of the ring R corresponding to the cycles, we obtain R_1 , the direct summand of the ring R which is the direct sum of finitely many of indecomposable right continuous right π -rings. Therefore we may assume that

the set Ω' contains no cycles.

If $\Omega' = \Omega$, then $\sigma : \Omega \to \Omega$ is a permutation by Lemma 2.9 and so Ω is a union of disjoint cycles, a contradiction. Therefore

$$\Omega' \neq \Omega. \tag{15}$$

We set $e = \sum_{\omega \in \Omega} e_{\omega}$ and note that e is an idempotent and

$$eR = \bigoplus_{\omega \in \Omega} e_{\omega} R \supseteq \bigoplus_{\omega \in \Omega} S_{\omega} \tag{16}$$

by (4). We claim that

$$(1-e)Re = 0. (17)$$

Indeed, assume that $(1-e)Re \neq 0$. Making use of Lemma 2.5 we see that $(1-e)Re = \sum_{\omega \in \Omega_{1-e,e}} S_{\omega}$ for some nonempty subset $\Omega_{1-e,e} \subseteq \Omega$ and so (16) implies that $eR \cap (1-e)R \supseteq (1-e)Re \neq 0$, a contradiction, which proves (17). Lemma 2.3(1) and (17) together imply that

$$(1-e)R$$
 is a ring with identity $1-e$. (18)

We now claim that

every idempotent $u \in (1-e)R$ is a central element of the ring (1-e)R. (19)

Indeed, $u\{(1-e)R\}(1-u) \subseteq uR(1-u)$ and so Lemmas 2.5 and 2.4 together imply that either $u\{(1-e)R\}(1-u) = 0$ or it contains some S_{ω} , $\omega \in \Omega$. The latter case is ruled out because it would imply that

$$S_{\omega} \subseteq [u\{(1-e)R\}(1-u)] \cap eR \subseteq (1-e)R \cap eR = 0.$$

Therefore $u\{(1-e)R\}(1-u)=0$. Since $(1-u)\{(1-e)R\}u=(1-e)(1-u)Ru$, the same argument shows that $(1-u)\{(1-e)R\}u=0$ and thus u is a central idempotent of the ring (1-e)R.

It follows from Lemma 2.3(8) that

$$(1-e)R$$
 is a right continuous right π -ring. (20)

Recall that $\Omega'' = \Omega \setminus \Omega'$. According to (15), $\Omega'' \neq \emptyset$. Given $\omega \in \Omega''$, we have that $e_{\omega}Re_{\gamma} = 0$ for all $\gamma \in \Gamma$ by the definition of the set Ω' . In particular, $e_{\omega}Re = 0$ and so $S_{\omega}e = 0$. Therefore $S_{\omega}(1 - e) = S_{\omega}$ and whence S_{ω} is a right (1 - e)R-module by Lemma 2.3(2). We claim that

$$S_{\omega}$$
 is a simple injective right $(1-e)R$ -module for all $\omega \in \Omega''$. (21)

Indeed, according to Lemma 2.3(5), S_{ω} is a simple right (1-e)R-module. Since $S_{\omega} \subseteq eR$, we see that $(1-e)R + S_{\omega} = (1-e)R \oplus S_{\omega}$. Being a right ideal of the right π -ring R, $(1-e)R \oplus S_{\omega}$ is a quasi-continuous right R-module and so S_{ω} is an injective (1-e)R-module by Lemma 2.3(9). Therefore (21) is proved.

Lemma 2.14 There exists a family $\{p_{\omega} \mid \omega \in \Omega'' = \Omega \setminus \Omega'\}$ of nonzero pairwise orthogonal idempotents of the ring (1-e)R such that

(1) p_ωR is a right continuous right π-ring with identity p_ω all of whose idempotents are central, and S_ω is a simple injective right p_ωR-module for all ω∈ Ω"; moreover, r(p_ωR; S_ω) is an essential right ideal of the ring p_ωR, p_ωR/r(p_ωR; S_ω) is a skew field and the p_ωR-module S_ω is not embedable into p_ωR.

- (2) $e_{\alpha}p_{\omega} = 0 = p_{\omega}e_{\alpha}$ and $p_{\omega}Re_{\alpha} = 0$ for all $\alpha \in \Omega$, $\omega \in \Omega''$.
- (3) $e_{\alpha}Rp_{\omega} = 0$ for all $\alpha \in \Omega \setminus \{\omega\}$ and $\omega \in \Omega''$.

Proof. Set u=1-e and T=uR. It follows from (17), (19) and (20) together that u is the identity of the right continuous right π -ring T all of whose idempotents are central. Further, let $\omega \in \Omega''$. By (21), S_{ω} is a simple right T-module and so $P_{\omega}=r(T;S_{\omega})$ is a right primitive ideal of T. Now (3) yields that T/P_{ω} is a skew field. Setting $P=\bigcap_{\omega\in\Omega''}P_{\omega}$ and making use of Chinese Reminder theorem we get that $T/P\cong\prod_{\omega\in\Omega''}T/P_{\omega}$ and so the ring T/P contains pairwise orthogonal idempotents u_{ω} , $\omega\in\Omega''$, such that $P_{\omega}/P=(1-u_{\omega})(T/P)$. That is to say

$$1 - u_{\omega} \in P_{\omega}/P \text{ for all } \omega \in \Omega''.$$
 (22)

Recall that $\overline{T} = T/J(T)$ is a strongly regular ring by (2) and $J(T) \subseteq P$. Therefore it follows from [3, Proposition 2.18] that the ring \overline{T} contains pairwise orthogonal idempotents v_{ω} , $\omega \in \Omega''$ such that $v_{\omega} + \overline{P} = u_{\omega}$ in $\overline{T}/\overline{P} = T/P$, where $\overline{P} = P/J(T)$. Next, [16, Theorem 4.9] implies there exists a family of nonzero pairwise orthogonal idempotents $\{p_{\omega} \mid \omega \in \Omega''\} \subseteq T$ such that $p_{\omega} + J(T) = v_{\omega}$ for all $\omega \in \Omega''$. Therefore $p_{\omega} + P = u_{\omega}$ in T/P. Now (22) yields that

$$S_{\omega}p_{\omega} = S_{\omega} \text{ for all } \omega \in \Omega''.$$
 (23)

Since all idempotents of T are central, we conclude that $p_{\omega}R = p_{\omega}T$ is a right continuous right π -ring with identity p_{ω} all of whose idempotents are central. Moreover, (21) and (23) together yield that S_{ω} is a simple injective right $p_{\omega}R$ -module. Let $Q = r(p_{\omega}R; S_{\omega})$. Assume that the right $p_{\omega}R$ -module S_{ω} is embedable into $p_{\omega}R$. Say, $S_{\omega} \cong K \subseteq p_{\omega}R$. Since p_{ω} is a central idempotent of the ring T, we conclude that $p_{\omega}R(1-p_{\omega})=0$ and so Lemma 2.3 implies that K is a right R-module, and right R-modules S_{ω} and K are isomorphic. As $S_{\omega} \cap K \subseteq e_{\omega}R \cap (1-e)R = 0$, we get a contradiction with square freeness of R.

Assume that Q is not an essential right ideal of the ring $p_{\omega}R$. Then there exists a nonzero right ideal K of $p_{\omega}R$ such that $Q \cap K = 0$. Clearly, Q is a right primitive ideal of $p_{\omega}R$ and so (3) implies that Q is a maximal right ideal of $p_{\omega}R$ (and $p_{\omega}R/Q$ is a skew field). Therefore $p_{\omega}R = Q \oplus K$. Clearly right $p_{\omega}R$ -modules S_{ω} and K are isomorphic, which is impossible by the above result. Therefore Q is an essential right ideal of the ring $p_{\omega}R$ and so the first statement of the lemma is proved.

Recall that u=1-e and $e=\sum_{\beta\in\Omega}e_{\beta}.$ Since $p_{\omega}\in T$ and u is the identity of the ring T, we conclude that $e_{\alpha}p_{\omega}=0=p_{\omega}e_{\alpha}$ for all $\alpha\in\Omega$ and $\omega\in\Omega''.$ Further, $p_{\omega}Re_{\alpha}\subseteq(1-e)Re.$ Since (1-e)Re=0 by (17), we see that $p_{\omega}Re_{\alpha}=0$ and so the second statement of the lemma is proved.

Now let $\alpha \in \Omega \setminus \{\omega\}$. Suppose that $e_{\alpha}Rp_{\omega} \neq 0$. Recall that $e_{\alpha}R = e_{\alpha}Re_{\alpha} + S_{\alpha}$ by (13). Since $e_{\alpha}p_{\omega} = 0$, we conclude that

$$S_{\alpha}p_{\omega} \neq 0.$$

If $\sigma(\alpha)$ is defined, then $S_{\alpha}e_{\sigma(\alpha)}=S_{\alpha}$ by Lemma 2.8(1). Since $e_{\sigma(\alpha)}p_{\omega}=0$, we get a contradiction $S_{\alpha}p_{\omega}=0$. Therefore $\sigma(\alpha)$ is not defined forcing $\alpha\in\Omega''$. Since $\alpha\neq\omega$, $p_{\alpha}p_{\omega}=0$. On the other hand $S_{\alpha}p_{\alpha}=S_{\alpha}$ by the first statement of the lemma, forcing a contradiction $S_{\alpha}p_{\omega}=0$. Thus $e_{\alpha}Rp_{\omega}=0$ and the lemma is proved. \square

A sequence $\{\omega_1, \omega_2, \dots, \omega_n\} \subseteq \Omega$ is called a chain if $\omega_i \in \Omega'$ and $\sigma(\omega_i) = \omega_{i+1}$ for all $i = 1, 2, \dots, n-1$. A chain is called maximal if it is not a proper subset of any other chain. Clearly a chain $\{\omega_1, \omega_2, \dots, \omega_n\}$ is maximal if and only if both $\omega_n \in \Omega''$ and $\omega_1 \notin \sigma(\Omega')$. Recall that $\sigma : \Omega' \to \Omega$ is an injective map by Lemma 2.9, Ω' does not contain cycles by our assumption and $|\Omega| < \infty$ by Lemma 2.12. Therefore Ω is a disjoint union of maximal chains.

Lemma 2.15 Let $\{\omega_1, \omega_2, \dots, \omega_n\} \subseteq \Omega$ be a maximal chain and let $w = p_{\omega_n} + \sum_{i=1}^n e_{\omega_i}$. Then w is a central idempotent of the ring R and the ring wR is of the form $G_n(D_1, \dots, D_n, \Delta, V_1, \dots, V_n)$.

Proof. Set $w' = \sum_{i=1}^n e_{\omega_i}$ and note that $w = p_{\omega_n} + w'$. It follows from both (4) and Lemma 2.14(2) that w is sum of pairwise orthogonal idempotents and so w is an idempotent. Assume that $wR(1-w) \neq 0$. Then by Lemma 2.5, $wR(1-w) = \sum_{\alpha \in \Omega_{w,1-w}} S_{\alpha}$. Given $\alpha \in \Omega_{w,1-w}$, the inclusion $S_{\alpha} \subseteq e_{\alpha}R$ implies that $e_{\alpha}S_{\alpha} = S_{\alpha}$. According to Lemma 2.14(3), $p_{\omega_n}e_{\alpha} = 0$ and so $p_{\omega_n}S_{\alpha} = 0$ as well. Since $S_{\alpha} \subseteq wR(1-w)$, $wS_{\alpha} = S_{\alpha}$ (and $S_{\alpha}(1-w) = S_{\alpha}$) forcing $w'S_{\alpha} = S_{\alpha}$. Taking into account (4), we conclude that $\alpha = \omega_i$ for some $1 \leq i \leq n$. If i < n, then Lemma 2.8(1) yields

$$S_{\alpha} = S_{\alpha} e_{\sigma(\omega_i)} = S_{\alpha} (1 - w) e_{\sigma(\omega_i)} = 0,$$

a contradiction. Therefore i=n. Note, that $S_{\alpha}p_{\omega_n}=S_{\alpha}$ by the choice of p_{ω} 's (see Lemma 2.14). Therefore

$$S_{\alpha} = S_{\alpha} p_{\omega_n} = S_{\alpha} (1 - w) p_{\omega_n} = 0,$$

a contradiction. Hence wR(1-w)=0.

Next, suppose that $(1-w)Rw \neq 0$. Again applying Lemma 2.5, we see that $(1-w)Rw = \sum_{\alpha \in \Omega_{1-w,w}} S_{\alpha}$. Since $e_{\omega_i}(1-w) = 0$, we conclude that $e_{\omega_i}S_{\alpha} = 0$ for all $1 \leq i \leq n$ and $\alpha \in \Omega_{1-w,w}$. Recalling that $e_{\alpha}S_{\alpha} = S_{\alpha}$, we infer that

$$\alpha \notin \{\omega_1, \omega_2, \dots, \omega_n\}.$$

Next, both the injectivity of σ and the maximality of the chain $\{\omega_1, \omega_2, \ldots, \omega_n\}$ imply that $\sigma(\alpha) \notin \{\omega_1, \omega_2, \ldots, \omega_n\}$ or $\sigma(\alpha)$ is not defined. Hence Lemma 2.8 implies that $e_{\alpha}Re_{\omega_i} = 0$ for all $1 \leq i \leq n$ and so $S_{\alpha}w' = 0$. On the other hand, $S_{\alpha} \subseteq (1-w)Rw$ and so $S_{\alpha}w = S_{\alpha}$, forcing

$$S_{\alpha}p_{\omega_n} = S_{\alpha}.$$

According to Lemma 2.14(3), $e_{\alpha}Rp_{\omega_n} = 0$ forcing $S_{\alpha}p_{\omega_n} = 0$, a contradiction. Therefore w is a central idempotent.

Set $v_i = e_{\omega_i}$, i = 1, 2, ..., n, $v_{n+1} = p_{\omega_n}$ and note that Lemmas 2.8 and 2.14 together imply that $\{v_i \mid 1 \leq i \leq n+1\}$ is a family of pairwise orthogonal idempotents such that

$$v_i R v_j \neq 0$$
 if and only if $i = j$, or $i \leq n$ and $j = i + 1$. (24)

Set $\Delta = v_{n+1}Rv_{n+1}$, $D_i = v_iRv_i$ and $V_i = v_iRv_{i+1}$ for all $i=1,2,\ldots,n$. According to Lemma 2.14(1), Δ is a right continuous right π -ring with identity v_{n+1} all of whose idempotents are central, and V_n is a simple injective right Δ -module; moreover, $r(\Delta;V_n)$ is an essential ideal of the ring Δ , the factor ring $\Delta/r(\Delta;V_n)$ is a skew field, and the right Δ -module V_n is not embedable into Δ . By Lemma 2.7, $\overline{R} = R/r(R;V_n)$ is a skew field and $\dim(\{V_n\}_{\overline{R}}) = 1$. Note that $r(\Delta;V_n) = r(R;V_n) \cap \Delta$ and $\Delta = v_{n+1}Rv_{n+1} = v_{n+1}R$ is a right ideal of R. Since $V_nv_{n+1} = V_n$, we conclude that the image $\overline{\Delta} = \Delta/r(\Delta;V_n)$ of Δ in \overline{R} is a nonzero right ideal in \overline{R} and so $\overline{\Delta} = \overline{R}$ forcing $\dim(\{V_n\}_{\overline{\Delta}}) = 1$.

Next, Lemma 2.7 implies that each D_i is a skew field, while Lemma 2.8(3) yields that

$$\dim(\{V_i\}_{D_{i+1}}) = 1$$
 for all $i = 1, 2, \dots, n-1$.

It follows from (24) that

$$wR = \bigoplus_{i,j=1}^{n+1} v_i R v_j = D_1 \oplus D_2 \oplus \ldots \oplus D_n \oplus \Delta \oplus V_1 \oplus V_2 \oplus \ldots \oplus V_n.$$
 (25)

Set
$$G = G_{n+1}(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n)$$
. Given

$$d_1 \in D_1, d_2 \in D_2, \dots, d_n \in D_n, \delta \in \Delta, v_1 \in V_1, v_2 \in V_2, \dots, v_n \in V_n,$$

we denote by $[d_1, \ldots, d_n, \delta, v_1, \ldots, v_n]$ the matrix

One can easily check that

$$[d_1, \dots, d_n, \delta, v_1, \dots, v_n][d'_1, \dots, d'_n, \delta', v'_1, \dots, v'_n] = [d_1 d'_1, \dots, d_n d'_n, \delta \delta', d_1 v'_1 + v_1 d'_2, \dots, d_{n-1} v'_{n-1} + v_{n-1} d'_n, v_n \delta' + d_n v'_n] (26)$$

We now define a map $f: wR \to G$ by the rule

$$f(d_1 + \ldots + d_n + \delta + v_1 + \ldots + v_n) = [d_1, \ldots, d_n, \delta, v_1, \ldots, v_n]$$

for all $d_1 \in D_1, \ldots, d_n \in D_n, \delta \in \Delta, v_1 \in V_1, \ldots, v_n \in V_n$. It follows from (25) that f is a bijective additive map. Taking into account (26) we see that f is an isomorphism of rings. This completes the proof. \square

Gathering together all direct summands of the ring R determined by maximal chains, we reduce the proof to the case when $\Omega = \emptyset$ and this case has already been considered. Thus the ring R has the decomposition described in Theorem 1.2. Since the direct sum of finitely many of right continuous right π -rings is again a right continuous right π -ring, the rest of the Theorem 1.2 follows from the following result.

Proposition 2.16 Let $R = G_n(D_1, \ldots, D_n, \Delta, V_1, \ldots, V_n)$. Then R is a right continuous right π -ring.

Proof. Let $1 \le i \le n+1$ and let e_i be the matrix whose (i,i)-entry is equal to 1 and all the other ones are equal to 0. It is easy to see that e_jRe_{j+1} is a minimal right ideal of R while e_jR/e_jRe_{j+1} is a simple module for all $j=1,2,\ldots,n$. Moreover, e_jRe_{j+1} is the only proper nonzero submodule of e_jR . Note that

$$e_i Re_j \neq 0$$
 if and only if $i = j$, or $i \leq n$ and $j = i + 1$. (27)

Given a right ideal K of the ring Δ , we set \widehat{K} to be the set of all matrices whose (n+1,n+1)-entries are from K and all the other ones are equal to 0. Clearly \widehat{K} is a right ideal of R. Moreover, if U is a right ideal of R, then

there exists a right ideal
$$K$$
 of Δ such that $Ue_{n+1} = \widehat{K}$. (28)

Given $1 \le i \le n$ and a right ideal K of Δ , we claim that

$$e_i R$$
 and \hat{K} ($e_i R e_{i+1}$ and \hat{K}) are are mutually injective. (29)

Indeed, let U be a submodule of \widehat{K} . By (28), $U = \widehat{V}$ for some right ideal V of Δ contained in K. First assume that i < n. Since $Ue_{n+1} = U$ and $\widehat{K}e_{n+1} = \widehat{K}$ while $e_i Re_{n+1} = 0$ by (27),

$$\operatorname{Hom}(\{e_iRe_{i+1}\}_R,\widehat{K}_R)=0$$
 and $\operatorname{Home}(U_R,e_iR_R)=0.$

As e_iRe_{i+1} is the only nonzero proper submodule of e_iR , (29) is proved in this case. Assume now that i=n. Let $f\in \operatorname{Hom}(\{e_nRe_{n+1}\}_R,\widehat{K})$. Then f induces a homomorphism of Δ -modules $f':V_n\to K\subseteq \Delta$. Since right Δ -modules V_n and $\Delta/r(\Delta;V_n)$ are isomorphic and $\Delta/r(\Delta;V_n)$ is not embedable into Δ by our assumption, we conclude that f'=0 forcing f=0 and $\operatorname{Hom}(\{e_nRe_{n+1}\}_R,\widehat{K})=0$. As e_nRe_{n+1} is the only proper nonzero submodule of e_nR , we see that \widehat{K} is e_nR -injective. Now let $g:U_R\to e_nR_R$ where U is a submodule of the right R-module \widehat{K} . Then

$$g(U) = g(Ue_{n+1}) = g(U)e_{n+1} \subseteq e_n Re_{n+1}.$$

Since V_n is an injective right Δ -module, e_nRe_{n+1} is an injective $e_{n+1}R$ -module. Therefore there exists $h: \widehat{K}_{e_{n+1}R} \to (e_nRe_{n+1})_{e_{n+1}R}$ such that $h|_U = g$. As $e_{n+1}R(1-e_{n+1}) = 0$, Lemma 2.3(6) implies that $h: \widehat{K}_R \to (e_nRe_{n+1})_R$. Therefore e_nR is \widehat{K} -injective.

Given $1 \le i, j \le n$ with $i \ne j$, we claim that

$$e_i R$$
 and $e_j R$ ($e_i R e_{i+1}$ and $e_j R$) are are mutually injective. (30)

Indeed, recall that e_jRe_{j+1} is the only proper nonzero submodule of e_jR . Let $f:(e_jRe_{j+1})_R\to e_iR$ (or $f:(e_jRe_{j+1})_R\to (e_iRe_{i+1})_R)$. Since $j\neq i$, (27) yields that $e_iRe_{j+1}\neq 0$ if and only if j=i-1. In this case $e_iRe_{j+1}=e_iRe_i$. Therefore $e_iRe_{j+1}\subseteq e_iRe_i$ in both cases. We now have $f(e_jRe_{j+1})=f(e_jRe_{j+1})e_{j+1}\subseteq e_iRe_{j+1}\subseteq e_iRe_i$. In order to show that f=0, it is now enough to show that e_iRe_i contains no nonzero right ideals of R. Since e_iRe_i contains no nonzero right ideals of R, we conclude that $f(e_jRe_{j+1})=0$. Therefore f=0 and so (30) is proved.

Recall that Δ_{Δ} is a continuous module all of whose submodules are quasi-continuous. It now follows from Lemma 2.3(6) that $\widehat{\Delta}_R = e_{n+1}R$ is a continuous module all of whose submodules are quasi-continuous. Next, both e_iR and e_iRe_{i+1} are continuous R-modules because they are uniform of finite length. Since $R = \bigoplus_{i=1}^{n+1} e_iR$ and e_iR and e_jR are mutually injective by (29) and (30), [15, Theorem 3.16] yields that R_R is continuous.

Let U be a right ideal of R. In order to complete the proof, it is enough to show that U_R is quasi-continuous. In view of [15, Proposition 2.7], we may assume without loss of generality that $U \subseteq_e R$. Then $e_i R e_{i+1} \subseteq U$ for all $i=1,2,\ldots,n$. Set $W=\sum_{i=1}^n e_i R e_{i+1}$ and note that $W\subseteq U$. Since the factor ring R/W is isomorphic to the ring $(\bigoplus_{i=1}^n D_n) \oplus \Delta$ and U/W is a right ideal of R/W, we conclude that there exist a partition I,J of the set $\{1,2,\ldots,n\}$ and a right ideal K of Δ such that

$$U = (\bigoplus_{i \in I} e_i R) \oplus (\bigoplus_{j \in J} e_j R e_{j+1}) \oplus \widehat{K}.$$

Now [15, Theorem 2.3], (29) and (30) together imply that U_R is quasi-continuous, completing the proof. \Box

References

- [1] K.I. Beidar, Y. Fong, W.-F. Ke and S.K. Jain, An Example of a Right q-ring, Israel J. Math., 127 (2002), 303–316.
- [2] K.A. Byrd, Right self-injective rings whose essential ideals are two sided, Pacif. J. Math. 82 (1979), 23–41.
- [3] K.R. Goodearl, Von Neumann Regular rings, Pitman, 1979.

- [4] D.A. Hill, Semi-perfect q-rings, Math. Ann. 200 (1973), 113–121.
- [5] G. Ivanov, Non-local rings whose ideals are quasi-injective, Bull. Austral. Math. Soc. 6 (1972), 45–52.
- [6] G. Ivanov, Addendum to "Non-local rings whose ideals are quasi-injective", Bull. Austral. Math. Soc. 12 (1975), 159–160.
- [7] G. Ivanov, On a generalization of injective von Neumann rings, *Proc. Amer. Math. Soc.* **124** (1996), 1051–1060.
- [8] S.K. Jain, Rings whose cyclic modules have certain properties and the duals, in Ring Theory, Proceedings of the Ohio Univ. Conf. 1976, Marcel Dekker
- [9] S.K. Jain, S.R. López-Permouth and S.R. Syed, Rings with quasicontinuous right ideals, *Glasgow Math. J.* 41 (1999), 167–181.
- [10] S.K. Jain, S.H. Mohamed and S. Singh, Rings in which every right ideal is quasi-injective, *Pacif. J. Math.* **31** (1969), 73–79.
- [11] A. Koehler, Rings for which every cyclic module is quasi-projective, *Math. Ann.* **189** (1970), 407–419.
- [12] A. Koehler, Rings with qusi-injective cyclic modules, Quart. J. Math. Oxford 25 (1974), 51–55.
- [13] S.H. Mohamed, Rings whose homomorphic images are q-rings, Pacif. J. Math. 35 (1970), 727–735.
- [14] S.H. Mohamed, q-rings with chain conditions, J. London Math. Soc. 2 (1972), 455–460.
- [15] B.J. Müller and S. Mohamed, Continuous and Discrete Modules, Cambridge University Press, 1990.
- [16] Y. Utumi, On continuos rings and self injective rings, Trans. Amer. Math. soc. 118 (1965), 158–173.
- [17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.