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In this article we obtain a nonnegative rank factorization of nonnegative matrices A satisfying onc or both of
the following conditions: (i) 447 > 0 (i) 474 > 0. thus providing a new set of conditions that guarantee
the existence of a nonnegative least-squares solution of a linear system. Indeed. the characterization
of such matrices improves some of the previous known conditions for the existence of a nonnegative
least-squares solution of a linear system.
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1 INTRODUCTION

A matrix A = (ay) is called nonncgative if aij > 0 for all i, j and this is expressed as
A = 0. The ith row of a matrix A is denoted by A.

Let 4 be an n x m matrix. Consider the Penrose Equations, (1) AXA4 = A4, (2)
XAX = X, (3)(4x)! = 4x, (4) (XA)" = XA where Xis an m x n matrix and 7 denotes
the transpose.

For a rectangular matrix 4 and for a noncmpty subset A of {1,2,3,4}, X is called a
r-imverse of A if X satisfies Eq. (/) for cach i € . In particular, the {1,2, 3.4} -inverse of
A Is the unique Moorc -Penrose generalized inverse and is denoted 4", Nonnegative
matrices  having nonnegative Moore-Penrose inverses have been characterized
previously by Berman and Plemmons [2,3]. The motivation of the study of i-monorone
matrices, 1.c., matrices having a nonnegative A-inverse, has its origin in the question
of finding a nonncgative solution of the linear system AX =B (sec {or example [6 -8]).
where 4 and B arc # x n matrices. It is clear that for suitable A, A™ > 0 is simply a
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84 S.K. JAIN AND J. TYNAN

sufficient condition for the cxistence of a nonncgative best approximate solution.
If B for example is p(4) = 37 a;4", a; = 0, then one may weaken the condition for
47 >0 1o the condition that 474 > 0. Furthermore, Corollary 5 shows that if
both 447 and A"V > 0, then the linear system 4x = b has a nonnegative least-squares
solution: and the class of such matrices 4 is larger than the class of matrices A
with 47 > 0.

Scction 2 establishes the main results. We conclude with an example of a nonnegative
matrix A such that 44" and 474 arc nonncgative, but 4™ is not nonnegative (contains
negative entrics).

2 MAIN RESULTS
We state first the following well-known result due to Flor characterizing nonnegative
idempotent matrices.

Lemvia | (Flor [3))  If E is any nonnegative idempotent matrix then there exists a
permutation matrix P osuch that

J JB 0 0
pEPT — 0 0 0 0
T lcsr o ciB 0 0
0 0 0 0
where
vl 0 0
r=| 0 »
. . . 0
0 0 xf
T

cach x;. vi are positive vectors with yIx; =1, and matrices B, C > 0 and the zeros in

the matrices are zero blocks of appropriate size. In particular, if E is symmetric, then

J 0
E‘[oo}

where
xxl0 0
J=| Y _ :
" 0
0 0 x.x!

cach x; is a positive unit vector.

We now present the decomposition theorem for nonncgative matrices A4 with
AAT = 0.
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NONNEGATIVE RANK FACTORIZATION 85

THEOREM 2 Ler A be a nonnegative 1 x n matrix of rank r. Then the following are
equivalent:

(1) There exists an AV such that 4403 > 0.

(1) There exists a permutation matrix P such that PAPT — FG

N

where
i 0 0
0
F = o |,
X,
0 0

cach x; s a positive wnit vecror, and the =eros are =ero vectors of appropriate size.

T T
dy, [
G -
T
(”'I Frd

where each a; is a nonnegative vector and rank G = r.
(iil) A4" > 0.

Proof (1) = (ii): So, assume there exists an A1~ such that 449 > 0. Since 44" is
a nonnegative symmetric idempotent, by Lemma 1, we have a permutation matrix P
such that

PAA(L})P’[‘:[J O:l

0 0
where
X \lf 0 0
J 0 ’
0
0 0 )

each x; 1s a positive unit vector.
Next, 44"Y4 = 4 implics (PAASIPTYPAPT) = PAPT. We partition PAP! in
conformity with the partitioning of PAA"IPT So Jet
An e A
PAP" =

A/'H.l A/‘+]J‘+|
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86 S.K. JAIN AND J. TYNAN

Then, (PAAYYPTYPAPTY = PAPT, and so,

xxhoo0 o0 Ay e e A A e Ay
0 J—
: ,\‘,.,\']T 0 : : : :
0 - 0 O0JLA40 - o A A o o A

Thus, (PAAYIPTYPAPTY = PAPT yiclds

Nix{ Ay e ] A A A
- T P
NN Ay e e XAy : :

0 0 A o e Ayt

This gives us .\‘,-.\',-TA,~, =Ajfori<r,j<r4+land 4,4, ;=0forallj<r+ 1.

Next, we claim that in the block partitioning of PAPT, for each i therc cxists /
such that A,; is not zero. We know that rank PAA"I P’ —rank A4 = r. Write
Ar=[xx/ Ay - o xx/ A4, ] the ith row in the block partitioning of
PAAY "PT Clearly, rank 4; < 1. If rank 4; = 0, then we have rank 4 < r, a contradic-
tion. Thus, rank 4, = 1, and this implies that at lcast one of the A; ;18 not zero.

So let us consider the equation .\‘,.\'1TAH = Ay Without loss of generality, assume

rank A;; = 1. Now, rank 4}, = | implies that 4y, = bja! where b, > 0 and a, = 0,
or /71 <0 and a, < 0. We may also assume that «¢; is a unit vector. Then by using
\1\1 A=Ay, we  get, XX blal ﬁb|a[ = \,\"b,a ay, = b|al ap = Xy = by

where 4| = \T/7| So, A) = Aixjal and we define al’ —Alal Note that if by >0
and a; > 0, then 2 > 0, while if b; <0 and ¢, < 0, thcn Ay <0, so in cither casc, we
haw, that alT is a nonn(,gatlvc vu.tor Then we repeat the same for all cquations
AVl A/ = A;;. Thus 4; = x;al where a is a nonnegative vector.

Thucfom we have the followmg

fxy, 0 --- 07
T T
-\I(’] \la[
1 il . . . T T
0 Lo ay, corody
PAP = : : =]l : : = FG say.
veal veal . »
! Troy 7 1
. a, ---od
0 0 o "
L0 - o 0]

Note that FG is a full-rank factorization of PAPT. It is clear that rank F = r.
Furthermore, because rank PAPT = rank 4 = r, we must have that rank G >
However, G only has i rows, so the rank of ¢ must be . Thereforc, we have a non-
negative full-rank factorization of PAPT. Thus, we have shown (i) = (ii).

Before we prove the next part of the thcorem, we make the following remark. As
argucd above, no row of G is entircly a zero row. Therefore, in each row of G, there
Is at lcast one nonzero vector.
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NONNEGATIVE RANK FACTORIZATION 87

(i) = (iii): So there exists a permutation matrix P such that PAPT = FG as above.
We will show that A{i"' > 0. Let B = PAPT. Because FG is a full-rank factorization
of B. we have B" = GT(FTBGT)Y "1 = GT(FTFGGT) 'FT. Now

X 0 07
Y| 0 0 xixy 0 0
, ] i 0 . .
oo : ) ’ ’ 0
0 0 0 . ' L 0 - 0 v,

Therefore, because each x; is a unit vector, x/x; = 1. Hence FIF =1, the rxr
identity matrix. So we have B' = GT(GG")™' FT. We first show that PAPT PA™PT > 0.

Now, PAPTPATPT = BB = FGGT(GGTY ' FT = FFT > 0.

Therefore. PAA*PT > 0. Finally, because P is a permutation matrix, 447 > 0,
proving (i) = (1ii).

(ii1) = (1): Obvious. [ |

We now present an example showing that the class of nonnegative matrices A4 with
AA" > 0 is not the same as the class of nonnegative matrices 4 with 474 > 0.

Example 3 Consider the matrix

1 1 1
— 0 — — 0
A= 1 1 = |
— 0 — = 0fl0 1 1}'
V2 V2 V2
0 1 1 0 1
This matrix is of the form described in Theorem 2.
For this matrix,
[ V2 V21
3 3 3
+ ] | 2
A=} ——— —— =
3W/2 32 3
1 1 1
L 3v2  3v2 3
Then we can sce that
1 1
AdT =11 1
530

2000-155




Ao S.K. JAIN AND J. TYNAN
while
2 1 1
3 3 3
AT = ! 21
3 3 3
1 1 2
3 3 3

The characterization of nonnegative matrices A with 474 > 0 is presented below
without proof as the proof is just the dual of the proof of Theorem 2.

TuroreM 4 Let A be a nonnegative 1 x 1 matrix of rank r. Then the following are
equivalent:

(i) There exists an AN such that A4 = 0.
(i) There exists a permutation matrix P such that PA P = FG,

where
ay, s ay,

drpl, oo drp,

cach a; is a nonnegative vector with rank F = r, and

xl0 - 00
G = 0 ,
0
0 0 ~xT 0

cach x; is a positive unit vector, and the zeros are zero vectors of appropriaie size.
(i) 474 > 0.

We remark that by considering the transposc of the matrix 4 in Example 3, we have a
nonnegative matrix 4 with A4 > 0, but AAT and AT arc not nonnegative, thus showing
that the the class of nonnegative matrices 4 with 474 > 0 is not the same as the class of
nonnegative matrices 4 with 447 > 0.

In addition, if we know that there exists a nonnegative A", then we get the following
Corollary.

COROLLARY 5 Let A be a nonnegative matrix. Under any one of the conditions in
Theorem 2. such that G as desceribed in that theorem contains a monomial submatrix of
rank r, then the system  Ax = b, where b is a nonnegative vector, has a nonnegative
least-squares solution.

Proof  Itis known that a least-squares solution of the lincar system Ax = b is given by
the consistent linear system Ax = AA4"Yp (cf. [1], Corollary 1, p. 104). Furthermore,

2000-156



NONNEGATIVE RANK FACTORIZATION 89

a solution of Ax = AA"-Yp is given by x = ADA44"-Ip ([1], Theorem 2, p. 40). Now,

by Theorem 2. we have that 4413 >0, and by the additional hypothesis on G there

exists an A" > 0 ([6]. Theorem 4.4). Thus, A744-9) is a nonncgative least-squares

solution of the lincar system 4x = b. |
To show that the class of matrices described in Corollary 5 is larger than the class of

nonnegative matrices 4 with 47 > 0, we present the following cxample.

Example 6 Consider the matrix

1 i 771 T
— 0 — 0 — 0
V2 V2 V2
1 I 1
— 0 — 0 — 0
V2 | V2 1010
R 1| 1 1 0 0 1
0 0 ——= 0 —
V2 V2 V2
1 1 |
— 0 0 — 0 —
L V2 V2l oL V2

which is of the form described in Corollary 5.
For this matrix,

| 1 | - L.
3V2 0 3V2 0 32 32 2.2
0 0 0 0 Flgo
2
4 =1 V2 V2 | i, Aqr =122 .
3 3 V232 00 5 3
L VzoooV2 1o
L7322 3 3 L0035 5]
and
0 0 0 0
0 0 0 0
A(l): ,
Y2 0 0 0
0 0 V2 0

a nonnegative {1}-inverse of 4.

This example illustrates the fact that there exists a nonncgative matrix A such that
AAT >0, AV > 0 but 47 is not nccessarily nonncgative.

We now characterize nonnegative matrices A4 with 44" > 0 and AT4 >0 in the
following thcorem.

Note that the proof seems very complicated considering that we have already charac-
terized nonncgative matrices 4 with either AA" >0 or A'4 > 0. This is duc to

2000-157
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the factorization not being unique as well as the fact that we would have different

permutation matrices in each decomposition.

Turoreim 7 Let A be a nonnegative 1 x n matrix of rank r. Then the following are

cquivalent.

() There exists an A" and an AYD cueh that AAYD >0 and AV A4 = 0.

(i) There exists permutation matrices P and P, such that PAPT = FG , where Fand G
are as in Theorem 2 and we have that

LI',I’I]V o -~ - 0
arl =[5 - =] "
o - 0 a’er 0
where each a;i", and z; are nonnegative vectors and [:1 :,.] is invertible.

(i) 44" >0 and A°A = 0.

Proof (i) = (ii): So 44" > 0and AT 4 > 0 for some A and 4. By Theorem 2
there exists a permutation matrix P such that PAPT = FG, wherc

xy 0 - 0
0o . W
F=1: 0 00
X,
_() 0_

cach x; is a positive unit vector, and the zeros are zero vectors of appropriate size.

T T
ay, [
G -
i T
(I” al'r-1

where cach ¢; is a nonnegative vector and rank G = r. Again, let B= PAP" and so
B =G (GGTYy 'k, since FTF=]. Therefore,
B B=GT GGy "FTFG=GT(GGT)™'G. Now because we have the additional assump-
tion that A'94>0. BtB= PATPTPAPT =PATAP" >0 also. Furthermorc, because
BB is a symmetric idempotent we have a permutation matrix Py such that

Ji 0

P\B'BP| =
0 0

2000-158



NONNEGATIVE RANK FACTORIZATION 91
where
'\‘/1-\'/|T o .- 0
0
Jy =
L0
0 0 N7

each ¥} positive unit vectors. Note the number of (positive) blocks on the diagonal is r
because rank J; = rank 4" 4.
Now, we also have that

P B BPT = P GT(GGTY'GPT = PiGT(GPI PGTY'GP|.

So. let G, = GP!. Then P\ B'BPI = GI(G\G])'G.

Consider Py B"BP[. Each diagonal block x/x}" is rank 1. Let x] be an /; x | vector.
The rows of PIB+BP'1[‘ in cach of the r scts that contain rows 1 through /|, rows
I, + 1 through /y +h,..., rows I; +---+ /[ + 1 through I + - -+ [.. are multiples
of cach other, and the rows /; +---+ /. + | through /; +--- + /4 are rows of zcros.
Therefore, the same must be true of GIT(GIGIT)*IGI.

Note that, in gencral, we have for any matrices C,D (CD);= CyD where X
denotes the ith row of matrix X. Therefore, we have the following:

(GVIT(GI G’{')f‘ Gy = (G',[‘)(,-)((GIG,T)’ lGl) for all 7. And, wc know that the second row
is a multiple of the first, so we have that (G'l"(GlG’{')"lGl)(z) = 3 (GT(GGT)Y Gy, for
some positive number As.

Therefore, we have that (G{ﬂ)(z)((GlGlT)'lGl):(G’{‘(GIG{')’IGI Yo =
1(GT(GIGT) ™ % Gy = MG GGG,

Thus. we get (G5, (GIGT) ' G1) = 2(GT ) ((G1G]) ™ G1), and so we multiply both
sides of this cquation by G! on the right to get that (G| )5 = 22(G| );,- Continuing this
process we obtain that the rows in each of the r scts consisting of rows 1 through /;,
rows /; + 1 through /, +/5...., rows [j +---+ 1L, + 1 through /; +---+ /. of Gl
arc multiples of each other.

Also, we know that the last /.y rows of PIBTBP{' arc rows of zeros, and cxactly as
above. we get that the last /.4 rows of GI are rows of zcros.

This gives us that

a a
1 i
Gl =
, ,
d\, a,
0 0
Therefore. the rows of the submatrix [¢) ¢ -+« Jare multiples of cach other,
1; 2 7

| <i<r Hence. we have rank [¢) a5 --- «. ]= 1. Thercfore, we have that the
1, r
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columns of [¢)  d),
let us assume @) # 0. Then

[(/'1’ asy e u;,]] - [a’ll ,63,-(1'1’

'

Brid), ] = a) [1

,321' o ﬂrﬁ]

, . . .
d, ] arc all multiples of a nonzero column. For convenience.

where the g; arc nonnegative real numbers. Note that some of them could be zero. So.

let =/ =1 By

T
ay =
PG =Gl =
T
alﬁr
0

where the zero is a zero block of appropriate size.
So we can rewrite this as

GP{ = [51 :,.]

Now we need only to show that [:[
B = GGG 'K = B = GT(GPI P GTY T
Now,

_(/I"" 0
o 0
OPlPICI :[:1 Z,<]
Lo - 0 af
‘(1’1]2 0
0
ST
0 0 |

0

0]

0

T
"1,

./

ay,

0

oft ] 1s 1nvertible.

0

07

B ] and then we have that each z; is an » x | vector and

We know that
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We know that this product is invertible. Each matrix in the product is an r x r matrix.
So the product is an r x r matrix that is invertible, and hencc the product has rank r.
But then cach matrix in the product has rank > r, and so each matrix is of rank r.

But then, cach matrix is invertible. Specifically, [:1

have proved (1) = (ii).

:,.] is invertible. So we

(il) = (iii): By invoking Theorem 2 we have AA" > 0. Thus we nced only to show that
A"4 > 0. To prove this, we will show that P PATAPT P] > 0.
First. notice that PATAPT = GT(GGT)™'G.

Next we compute

ppa APt Pl = pGTGr PGy 'GP

= PIGT [:1

r a’ll 0

0

L O

e
0
- 0
s
L 0 0_L

0

0
S|

.0
0 7
T
o
0 :
T
ay |Rr
0
0
0
0

2
’
|

-
0 0
0
0 ‘a’l )
o
el ‘a[]
S
: 0
el
0
0
a’{ 0
0 T
”/171-
0
%
0 :
! 0
Ia’lr )

0 (/{ 0
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In this product, all of the matrices are nonncgative, and so the product is non-
negative. Thus, we have shown that PIPA%APTPIT > 0 and hence, 4" 4 > 0. Proving
(i1) = (i1).

(1ii) = (i): Obvious. [ |

We conclude this section with an example that shows that the class of matrices
characterized in Theorem 7 is in fact strictly larger than the class of nonnegative
matrices 4 having A" > 0.

Example §  Consider the matrix

|
A=10 0 1
0 0 0
For this matrix,
| i
3 320
AT =11 1
5 73 0
0O 1 0

which has ncgative entries. However, it is easily verificd that

‘ 1 0 0
A4 =10 1 0
0 0 0
and
1 1
- = 0
2 2
ATa=11 1
- = 0
2 2
0 0 1

both of which are nonncgative.

This example is of interest for another reason. We find that 447 and 474 arc
nonnegative, with decompositions as a direct sum of three and two blocks of Type 7
respectively. Whercas 447 is a direct sum of three blocks. [1].[1] and [0]. 474 is a
direct sum of two blocks,

o= o] —
2= 2] —

and [1].
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