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Abstract

In this paper certain injectivity conditions in terms of extensions
of monomorphisms are considered. In particular, it is proved that a
ring R is a quasi-Frobenius ring if and only if every monomorphism
from any essential right ideal of Rp into Rg) can be extended to Rp.
Also, known results on pseudo-injective modules are extended. Dinh
raised the question if a pseudo-injective CS module is quasi-injective.
The following results are obtained: M is quasi-injective if and only if
M is pseudo-injective and M? is CS. Furthermore, a uniform pseudo-
injective is quasi-injective. As a consequence of this it is shown that
over a right Noetherian ring R, quasi-injective modules are precisely
pseudo-injective CS modules.

1 Introduction

Throughout the paper rings are associative with identity and modules are
unitary (right) modules. Let M and N be two right R-modules over a ring
R. M is called (pseudo-)N-injective if, for any submodule A of N, every
homomorphism (resp. monomorphism) in Hompg(A, M) can be extended to
an element of Hompg(N,M). M is called quasi-injective (pseudo-injective)
if it is (pseudo-) M-injective. M and N are called relatively injective if M
is N-injective and N is M-injective. A submodule K of M is said to be a



complement in M of a submodule B if K is a maximal submodule among
those which have zero intersection with B. Complement submodules of M
coincide with the submodules of M which do not have any proper essential
extension in M. Also, if A is a complement in M and B is a complement in
A, then B is a complement in M. A CS module is one in which complement
submodules are direct summands. M is called a continuous module if it is
a CS module and submodules of M isomorphic to direct summands of M
are again direct summands. If M is continuous and A and B are two direct
summands of M with ANB = 0, then A® B is also a direct summand of M.
For other properties of complements and CS/ continuous modules and the
proofs of the above mentioned properties, the reader is referred to [5] and
[13].

In this paper a weaker form of pseudo-N-injectivity is considered and
it is proved, in particular, that a ring R is quasi-Frobenius if and only if
monomorphisms from essential right ideals of R into R™ can be extended
to Rg. Also it is shown that a module M is invariant under monomorphisms
of its injective hull if and only if every monomorphism from any essential
submodule of M can be extended to M. This extension property is used to
characterize when semi-prime/right nonsingular rings are SI (see [9]).

Pseudo-injectivity has been studied by several authors such as Dinh, Jain,
Singh, Teply, Tuganbaev and others (see [3], [12], [11], [17], [18], [19]). It was
first introduced by Jain and Singh [12]. Teply [18] constructed examples of
pseudo-injective modules which are not quasi-injective. In [3] Dinh raised
the question if a pseudo-injective CS module is quasi-injective. He stated in
[4] that the answer is affirmative if we assume further that M is nonsingular.
In this paper we prove the following: M is quasi-injective if and only if M
is pseudo-injective and M? is CS. Every uniform pseudo-injective module is
quasi-injective. Consequently, over a right Noetherian ring R, quasi-injective
modules are precisely pseudo-injective CS modules.

2 Essentially pseudo-/N-injectivity

In this section we consider a weaker form of pseudo- N-injectivity.

Definition 1 Let M and N be two modules. M is said to be essentially
pseudo-N-injective if for any essential submodule A of N, any monomorphism
f+A— M can be extended to some geHom(N,M). M is called essentially
pseudo-injective if M is essentially pseudo-M -injective.



Obviously any pseudo- N-injective module is essentially pseudo-/N-injective,
but the converse is not true in general.

Example 1 Let p be a prime. The Z-module Z/p?Z is not pseudo-(Z &
Z/p*Z)-injective since the obvious isomorphism ¢ : pZ/p*Z — Z/p*7Z can not
be extended to any element of Hom(Z & Z/p*Z,7Z/p*Z), but it is essentially
pseudo-(Z @ Z/p*7Z)-injective.

The following proposition provides a characterization of essentially pseudo-
N-injectivity.

Proposition 1 Let M and N be two modules and X = M @& N. The follow-

ing conditions are equivalent:
(i) M is essentially pseudo-N -injective;
(it) For any complement K in X of M with KNN =0, M® K =X,

Proof. (i) = (ii) Let K be a complement in X of M with K NN = 0,
and myy c M &N — M and 7y : M & N — N be the obvious projections.
Note that M & K = M & 7wy (K) so that mn(K) is essential in N.

Now define 6 : mn(K) — mp(K) as follows: For keK with k = m +n
(meM,neN), 6(n) = m. Then 6 is a monomorphism by the K " N = 0
assumption. Hence 6 can be extended to some g : N — M, since M is
essentially pseudo-N-injective. Now let 7' = {n + g(n) : neN}. It is easy to
see that M & T = X. Also, T contains K essentially by modularity. Since
K is a complement, this implies T"= K. Now the conclusion follows.

(ii)) = (i) Assume (ii). Let A be an essential submodule of N and
f A — M be a monomorphism. Let H = {a — f(a) : acA}. Obvi-
ously, HN N = 0. Also note that M & H = M & ny(H) = M & A, which
is essential in X. Let K be a complement in X of M containing H. By the
previous argument and modularity H is essential in K, so that K N N = 0.
By assumption we have M & K = X. Now let ¢ : M & K — M be the
obvious projection. Then the restriction ¢y is the desired extension of f.
The proof is now complete.

Proposition 2 If M is essentially pseudo-N -injective, every direct sum-
mand of M 1is essentially pseudo-N -injective.
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Proof. Let X = M @ N and assume M = My @ A. Let K be a comple-
ment in My ® N of My with K "N = 0. Then M @ K is essential in X.
Since K is a complement submodule, the preceding argument implies that K
is also a complement in X of M. Now by Proposition 1 M & K = X. Then
My @® K = My @ N, which yields the conclusion again by Proposition 1.

The next example shows that essentially pseudo-N-injectivity is not in-
herited by direct sums.

Example 2 Let F' be a field and R = ](? F?F Consider the R-
_(F FeF (0 0@ F (0 F&o0
modulesN-(O 0 ),Sl—(o 0 ),SQ—(O 0 ).Then51

and S, are both essentially pseudo-N-injective. But since the identity map
of S1 ® S5 obviously can not be extended to an element of Hom(N,S; @& Ss,
S1 @ Ss is not essentially pseudo-N-injective.

Proposition 3 Let M and N be two modules. Then the following conditions
are equivalent:

(i) M is N-injective ;
(11) M is essentially pseudo-N/L-injective for every submodule L of N.

Proof. (i) = (ii) follows from [13, Proposition 1.3].

(ii) = (i) Assume M is essentially pseudo-N/L-injective for every sub-
module L of N. Let X = M & N, A C X with ANM = 0 and K be a
complement in X of M containing A. Alsolet 7= KNN. Since ( M & K)/K
is essential in X/K, then (M@ K)/T is essential in X/T', and K/TNN/T = 0.
Thus it is easy to see that K/T is a complement in X /7T of (M &T)/T. Now
by assumption and Proposition 1 we have (M &7T')/T & K/T = X/T. Hence
M @& K = X. Then by [5, Lemma 7.5] M is N-injective.

Corollary 1 M is injective if and only if M is essentially pseudo-N -injective
for any cyclic module N .

Corollary 2 A nonsingular module M is injective if and only if it is essen-
tially pseudo-N -injective for any nonsingular cyclic module N .
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The following result generalizes |3, Theorem 2.2] and [11, Theorem 1].
Theorem 1 If M@®N s essentially pseudo-N -injective then M is N -injective.

Proof. Call X = M@ N. Let A and K be as in the proof of Proposition 3.
Let 7 : M @ N — N be the obvious projection. Then M & K = M & 7(K)
and thus 7(K) essential in N. Note that K = 7(K). Pick any isomorphism
f:7m(K) — K. By assumption f can be extended to some monomorphism
g: N — X. Then g(n(K)) = K is essential in g(N). But since K is
a complement in X, we must have K = ¢(N), whence n(K) = N. Thus
M @& K = X. Now the result follows by [5, Lemma 7.5].

Corollary 3 M is quasi-injective if and only if M? is essentially pseudo-M -
mjective.

Ososfky proved in [15] that a ring R is semisimple Artinian if and only if
every cyclic right (left) R-module is injective.

Corollary 4 A ring R is semisimple Artinian if and only if every countably
generated right R-module is essentially pseudo-injective.

Proof. Let M be a cyclic right R-module. Then (M & R)N = (M @
RYN @ (M@ R)™, which is countably generated, whence essentially pseudo-
injective. Thus (M @ R™)? is essentially pseudo-(M @& R™)-injective. Then
by Theorem 1, (M @& R™) is quasi-injective, whence Rp-injective. Therefore
M is injective. Now the conclusion follows by Osofsky’s theorem.

Corollary 5 (/3, Theorem 2.2]) If M & N s pseudo-injective then M and

N are relatively injective.

In what follows F(M) stands for the injective hull of M and we will
consider M as a submodule of E(M). Also we will use the notation Ey (M)
for the submodule of E(M) generated by all the isomorphic copies of N.
Note that En(M) is invariant under monomorphisms of End(E(M)) and
that Eg,(M) contains all elements of M with zero right annihilator in R.

Proposition 4 M is essentially pseudo-N -injective if and only if Ex(M) C
M.



Proof. Assume En(M) C M and let B be an essential submodule of N,
and f : B — M be a monomorphism. There exists some monomorphism
g: N — E(M) such that gz = f. By assumption g(N) C M. Thus g is the
desired extension of f, whence M is essentially pseudo-/N-injective.

Conversely assume that M is essentially pseudo- N-injective. We will use
the same argument as in [13, Lemma 1.13]: Let h : N — E(M) be a
monomorphism. Let A = h™'(M). Then A is essential in N. Thus, by
assumption, the restriction hj4 extends to some ¢ : N — M. Now assume
h(n) # 6(n) for some neN. Then z = h(n) — #(n) # 0. Since M is essential
in F(M), there exists some reR such that 0 # xr = h(nr) — 6(nr)eM. But
then h(nr)eM so that nreA. This is a contradiction since 0|4 = hja. Now
the conclusion follows.

Corollary 6 M s essentially pseudo-injective if and only if it is invariant
under monomorphisms in End(E(M)).

Corollary 7 Let {A;} be a family of submodules of a module N, B = XA,
and assume M is essentially pseudo-A;-injective for each i. Then M is es-
sentially pseudo-B-injective.

Proof. Let f: B — E(M) be a monomorphism. Then f(B) = X f(A;).
By assumption and Proposition 4, f(B) is contained in M. Now the conclu-
sion follows again by Proposition 4.

The converse of the Corollary 7 does not hold in general.

Example 3 Let p be a prime. It is easy to see that the Z-module Z/p?Z is
not essentially pseudo-Z/p*Z-injective, but it is trivially essentially pseudo-
(Z & Z/p*Z)-injective.

Corollary 8 Let E be an injective module and A be any submodule of E.
Then X = X{C|C < E,C = A} is essentially pseudo-injective.

Proof. First note that F(X) is a summand of E. As in the proof of
Corollary 7, for any monomorphism f : X — E(X), f(X) is contained in X.
The conclusion follows by Proposition 4.

Goodearl defined a right SI-ring to be one over which every singular right

module is injective ([9]). Such rings are precisely right nonsingular rings over
which singular right modules are semi-simple (see [5]).
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Theorem 2 Let R be a ring which is either right nonsingular or semi-prime.
The following conditions are equivalent:

(i) R is a right SI-ring;

(11) Any two cyclic singular right R-modules are relatively essentially pseudo-
mjective;

(i1i) For any two cyclic singular right R-modules B and C, Eg(C) C C.

Proof. (i) = (ii) Trivial.

(ii) < (ili) By Proposition 4.

(ii) = (i) Assume (ii). Then cyclic singular right R-modules are relatively
injective by Proposition 3. So if C' and M are singular right R-modules and
C'is cyclic, then C'is M-injective by the above argument and [13, Proposition
1.4]. This implies, by [5, Corollary 7.14], that all singular right R-modules
are semi-simple.

Now, if R is right nonsingular, the conclusion immediately follows by
the preceding remark and the above argument. FElse, assume that R is
semi-prime. Since singular modules are semi-simple, Z(Rz)* = 0, whence
Z(Rg) = 0. Now the conclusion follows by the above argument.

3 Pseudo-injectivity

Proposition 5 Let M and N be two modules and X = M & N. The follow-
ing conditions are equivalent:

(i) M is pseudo-N -injective;

(ii) For any submodule A of X with ANM = ANN = 0, there ezists a
submodule T of X containing A with M &T = X.

Proof. (i) = (ii) Assume (i) and let A satisfy the assumptions of (ii). Also
let mp; and 7wy be as in the Proposition 1, and define 6 : 7y (A) — ma(A)
as follows: 0(my(a)) = mar(a), for acA. Then, by assumption, 6 extends to
some geHom(N, M). Let T = {n+ 0(n)|neN}. Then we have M & T = X
and A C T, as required.

(ii) = (i) Assume (ii). Let B be a submodule of N and f : B — M be
a monomorphism. Call A = {b — f(b)|beB}. Then ANM = ANN = 0.
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Now , by assumption, there exists a submodule T" of X containing A with
MeT =X. Let m: M &T — M be the obvious projection. Then the
restriction 7y is the desired extension of f.

Jain and Singh proved in [12, Theorem 3.7] that for a nonsingular mod-
ule M with finite uniform dimension, the following conditions are equiv-
alent: (i) M is pseudo-injective; (ii) M is invariant under any monomor-
phism(”isomorphism” in the terminology of [12]) of End(E(M)) (i.e. M is
essentially pseudo-injective by Corollary 6). The following result extends it
to any module with finite uniform dimension.

Theorem 3 A module M with finite uniform dimension is pseudo-injective
if and only if it is essentially pseudo-injective.

Proof. Let M be essentially pseudo-injective and A be a submodule of M
with a monomorphism f: A — M. Call B = f(A). Pick, by Zorn’s Lemma,
two submodules A’ and B’ of M such that A& A" and B @ B’ are essential
in M. Now, E(M) = E(A) ® E(A") = E(B) ® E(B') and F(A) = E(B).
Then by [13, Theorem 1.29] and since M has finite uniform dimension, we
have F(A") =2 E(B’). Thus A" and B’ have isomorphic essential submodules
UCA and V C B'. Then A® U and B @ V are essential submodules of
M. Let ¢ : U — V be any isomorphism. Then there exists an isomorphism
0:A®U — B@V such that 4 = f. By assumption 0 extends to some
geEnd(M). Obviously, gja = f. Therefore the conclusion follows.

Note that, in [1, Theorem 2.1] Alamelu gives a proof of the equivalence
in Theorem 3 without the finite dimension assumption. However the proof
is incorrect. In summary, the proof states that, for a module M which is
invariant under monomorphisms of its injective hull, and for any monomor-
phism f : N — M where N is a submodule of M, f can be extended to
a monomorphism f” : E(M) — E(M). This is not correct as the follow-
ing example shows: Let M be any directly infinite injective module with
M = N & B where M =2 N and B is nonzero. Also let f : N — M be
any isomorphism. Obviously f can not be extended to a monomorphism in

In [6] and [7] Er studied the modules in which isomorphic copies of com-
plements are again complements. These are called SICC-modules in [7]. The
following result was proved in [12] for nonsingular modules, but the proof
works for an arbitrary pseudo-injective module as well.
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Lemma 1 (Jain and Singh [12, Lemma 3.1]) If M is pseudo-injective then
submodules of M isomorphic to complements in M are again complements.

Proof. Let K be a complement in M and A be a submodule of M with
an isomorphism f : A — K. Then f extends to some ge End(M) by assump-
tion. Pick, by Zorn’s Lemma, a complement A’ in M essentially containing
A. Then the restriction g4/ is obviously a monomorphism. Hence K = g(A)
is essential in g(A’). Since K is a complement this implies K = g(A’), whence
A = A’'. The conclusion follows.

Remark Modules in which submodules isomorphic to complements are
complements always decompose into relatively injective summands by [7,
Lemma 4]. So Corollary 5 also follows from that result and Lemma 1. It is
proved in [3, Corollary 2.8] that a pseudo-injective CS module is continuous.
This result also follows from Lemma 1 and the definition of CS.

Dinh [3] raised the question whether a CS module M which is pseudo-
injective is quasi-injective, and stated in [4] that the answer is affirmative
when M is furthermore nonsingular. Now we present some partial answers
to Dinh’s question.

Theorem 4 M is quasi-injective if and only if M is pseudo-injective and
M? is CS.

Proof. Assume M is pseudo-injective and M? is CS. Let M, and M, be
two isomorphic copies of M and X = M; & M,. Note that M is continuous
by the preceding remark.

First let A be any complement in X with ANM; = 0 and AN M, essential
in A. There exist submodules V and V' of M, such that V & V' = M,
and V contains A N M, essentially. Also since M? is CS by assumption,
we have A @& A’ = X for some submodule A" of X. Since V is a direct
summand of a continuous module, V' is continuous (see [13]), whence it has
exchange property by [13, Theorem 3.4]. Since V' N A is essential in A we
have VN A’ = 0. Thus we must have V & A’ = X. Hence A is isomorphic to
a summand, namely V' of M,.

Now let C' be a submodule of X such that C' N M; = 0 and pick, by
Zorn’s Lemma, a complement K in X of M; containing C'. Again by Zorn’s
Lemma, choose a complement K; in K of K N My and a complement K5 in



K of K, containing K N M,. Note that K N Ms is essential in Ky and that
K, and K, are complements in X by [5, 1.10]. By Proposition 5 there exists
some submodule T of X containing K; with My & T = X. Then T = M
and K is a complement in 7', whence K is isomorphic to a complement in
Ms;. Also by the preceding paragraph K» is isomorphic to a complement of
M5 too. Now consider the usual projection 7w : My & My — M,. We have
M1 D (Kl D KQ) = M1 D (W(Kl) D W(KQ)), where ’/T(KZ) = Kl Hence by
continuity of M, and the above argument, m(K;) @ m(K3) is a summand of
M,. Now, since K is a complement of M, M1 @K = M;®7w(K) is essential in
X. Then 7 (K) is essential in M;. Also, by choice of K;, K1 @ K> is essential
in K. Then 7(K7) @ w(K3) is essential in 7(K), hence in M. This implies
that My = 7(K;) @ m(K3) = w(K). Thus M; & K = X. Now it follows by
[5, Lemma 7.5] that M; is Ma-injective. The proof is now complete.
The following is a key result.

Lemma 2 The following conditions hold:
(i) A uniform pseudo-injective module M is quasi-injective.

(ii) Let M = @D,.; M; be a direct sum of uniform modules M;. M is quasi-
ingective if and only if it is pseudo-injective.

Proof. (i) Let A be a submodule of M and f : A — M be a nonzero
homomorphism. If Ker(f) = 0 then f can be extended to an element of
End(M) by assumption. So assume Ker(f) # 0. Let § = iy — f, where
ia : A — M is the inclusion map. Since Ker(f) # 0 and M is uniform,
Ker(§) = 0. Then by pseudo-injectivity assumption § can be extended to
some geEnd(M). Now 1 — g is obviously an extension of f. The conclusion
follows.

(ii) Let M be pseudo-injective. Then, by Corollary 5, M (I — i) is M;-
injective for all ie/. Now by part (i) and since direct summands of pseudo-
injectives are obviously pseudo-injective, each M; is quasi-injective. There-
fore M is quasi-injective.

Theorem 5 Ower a right Noetherian ring R, a module M is quasi-injective
if and only if M is a pseudo-injective CS-module.

Proof. Let M be a pseudo-injective CS module. Then M is a direct sum
of uniform submodules by [14]. Now the result follows by Lemma 2.
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Before proving the next result, note that R is called a right countably
>-CS ring if Rg) is a CS module.

Theorem 6 The following conditions are equivalent for a ring R:

(i) R is a quasi-Frobenius ring;
(i1) Every projective right R-module is essentially pseudo-Rp-injective;
(1i1) Rg) is essentially pseudo-Rp-injective;

(iv) R is a right countably ¥-CS ring with finite uniform dimension and Rr
15 essentially pseudo-injective.

Proof. The implications (i) = (ii) and (ii) = (iii) are obvious, and (i) =
(iv) follows from the fact that every injective module is CS, and (iii) = (i)
follows by Theorem 1.

(iv) = (i) Since Rp has finite uniform dimension, then Rp is pseudo-
injective by Theorem 3. By assumption Rr = @;_, ¢;R for some uniform
right ideals e; R. By Corollary 5 e; R are relatively injective. Also by Lemma 2
each e;R is a quasi-injective right R-module. Thus R is right self-injective
with finite uniform dimension. Hence R is a semiperfect right countably -
CS ring. This implies by [10] that R is Artinian. Now the conclusion follows.

The following results were proved in [7, Theorem 2, Corollary 4, Theorem
3, Theorem 4] for modules in which submodules isomorphic to complements
are complements. Each pseudo-injective module satisfies this property by
Lemma 1, whence we have the following corollaries.

Corollary 9 Any decomposition of a pseudo-injective module into indecom-
posable submodules complements summands.

Corollary 10 A essentially pseudo-injective module with finite uniform di-
mension has the internal cancellation property.

Recall that every right R-module over a right Noetherian ring R is locally
Noetherian.

Corollary 11 If M s a locally Noetherian pseudo-injective module, then
M = A® B, where A is a maximal quasi-injective summand, B has no quasi-
injective summands, and A and B have no nonzero isomorphic submodules.

Corollary 12 A locally Noetherian Dedekind-finite pseudo-injective module
has internal cancellation property.
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