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ABSTRACT. It is shown that (i) every almost selfinjective group
algebra is selfinjective, and (7i) if the group algebra KG is con-
tinuous then G is a locally finite group. Furthermore, it follows
that a CS group algebra KG is continuous if and only if KG is
principally selfinjective if and only if G is locally finite.

1. INTRODUCTION

It is well-known that the group algebra K G of a group G over a field
K is selfinjective if and only if GG is a finite group, and is principally
selfinjective if and only if G is a locally finite group. Every right self-
injective ring is right continuous in the sense of von Neumann, that
is, every complement right ideal is a summand and every right ideal
isomorphic to a summand is itself a summand. Rings in which com-
plement right ideals are summands are called right CS rings. A ring R
is said to be a right almost selfinjective ring if for each right ideal K
of R and for each R-homomorphism f : K — R either f can be ex-
tended to R or there exists an R-homomorphism g : R — R such that
go f = Ik, the identity on K. Prime and semiprime CS group algebras
of polycyclic-by-finite groups have been studied in [1], [2], [11], and [12].
Since a prime regular right and left continuous (equivalently, CS) ring
is simple, it follows that there does not exist a nontrivial prime regular
continuous group algebra. The purpose of this paper is to study: (1)
when is a group algebra almost selfinjective? and (2) when is a group
algebra continuous? We show that every almost selfinjective group
algebra is selfinjective (Theorem 3.9); and if the group algebra KG is
continuous then G is a locally finite group (Theorem 4.3). We conclude
the paper with a number of examples and a question.
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2. DEFINITIONS AND NOTATION

Throughout this paper, unless otherwise stated, all rings have iden-
tity 1 # 0 and all modules are right unital. A submodule K of a right
R-module M is said to be essential in M, denoted by K C. M, if for any
nonzero submodule L of M, KNL # 0. M is called a CS (or extending)
module if every submodule of M is essential in a direct summand of
M, equivalently, if every closed submodule of M is a direct summand
of M. A CS module M is called continuous if a submodule N of M
isomorphic to a direct summand of M is itself a direct summand of M.
M is called principally injective if for any a € R, any R-homomorphism
f i aR — M can be extended to an R-homomorphism from Rg to
M.

A ring R is said to be right CS (right continuous, right principally
selfinjective) if the right R-module R is CS (resp. continuous, princi-
pally injective). R is called a right almost selfinjective ring if for each
right ideal K of R and for each R-homomorphism f : K — R either f
can be extended to R or there exists a R-homomorphism g : R — R
such that g o f = Ik, the identity on K. R is called right quasi-
continuous (equivalently, m-injective) if for any two right ideals A; and
Ay of R with A; N Ay = 0, each projection m; : Ay & Ay — A;, 1 =1,
2, can be extended to an endomorphism of Rr. Obviously, a right al-
most self-injective ring is right m-injective. R is called directly finite
if for a,b € R, ab = 1 implies ba = 1. Clearly, if R has no nontrivial
idempotents then R is directly finite.

For a ring R, Z(Rg) will denote the right singular ideal of R and
U(R) will denote the multiplicative group of units of R. For a nonempty
subset X of a ring R, r.anng(X) (l.anng(X)) will denote the right
(left) annihilator of X in R. If X is the singleton {a} then we write
r.anng(X) = r.anng(a) (l.anng(X) = l.anng(a)). For any a € R, I,
will denote the left multiplication by a.

A group G is called locally finite if every finitely generated subgroup
of G is finite. For a group G, A(G) will denote the FC subgroup of G
and w(K @) will denote the augmentation ideal of the group ring KG.
If H is a subgroup of G, for the sake of simplicity we will write w(H)
to denote w(K H)KG (or KGw(K H)). However, if H is a normal sub-
group then w(KH)KG = KGw(K H). It is known that a subgroup H
of a group G is infinite if and only if r.annkg(w(H)) = 0 (equivalently,
lanngg(w(H)) = 0).

The involution * : KG — KG given by (Zazgz) Z:OzzgZ de-

fines an anti-automorphism of K'G of order 2 From thls We deduce
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that K'G enjoys similar right and left properties. In particular, we ob-
serve that KG is right CS (right continuous, right quasi-continuous,
right almost selfinjective) if and only if K G is left CS (resp. left con-
tinuous, left quasi-continuous, left almost selfinjective). In view of this
we will omit right or left prefix while working with CS (continuous,
quasi-continuous, almost selfinjective) group algebras.

3. ALMOST SELFINJECTIVE GROUP ALGEBRAS

Lemma 3.1. Let R be a right almost selfinjective ring. Then R 1is
right quasi-continuous (w-injective).

Proof. 1t is straightforward. g

Lemma 3.2. Let R be a right almost selfinjective ring. Then for every
a, b € R with r.anng(a) = 0 and r.anng(b) # 0, Rb C Ra and if
r.anng(a) =0 and r.anng(b) = 0, then either Ra C Rb or Rb C Ra.

Proof. Define f : aR — bR by f(ar) = br. Clearly, f is a well defined
R-homomorphism. First assume that r.anng(a) = 0 and r.anng(b) #
0. Then f is not one-one. Since R is right almost selfinjective, f
can be extended to R. Hence there exists s € R such that f = [
on aR. Thus b = f(a) = sa. Consequently Rb C Ra. Now let
r.anng(a) = 0 and r.anng(b) = 0. In this case f is one-one. So
either f = [; on aR for some s € R or there exists s € R such that
lsof=1,r. If f =1, 0n aR then as above Rb C Ra. If ;o f = I,r
then a = (5o f)(a) = sf(a) = sb € Rb. Thus Ra C Rb. 1

Lemma 3.3. ([13], Proposition 1.5) A module N is (@ A;)-injective
iel

if and only if N is A;-injective for every i € I.

Lemma 3.4. Let R be a right almost selfinjective ring. If R has a

nontrivial idempotent element, then R is right self-injective.

Proof. Let e be a nontrivial idempotent element of R. By Lemma 3.3,
it is enough to prove Ry is both eR-injective and (1 — e)R-injective.
Let X be a nonzero submodule of eR and f : X — R be an R-
homomorphism. Define g : X@(1—e)R — R by g(z+(1—e)r) = f(z).
Then g is an R-homomorphism which is not one-one. Since R is almost
selfinjective of R, there exists a homomorphism h : R — R such that
h |x@(1—eyr= g. But then h [x= f. Thus R is eR-injective. Similarly,
R is (1 — e)R-injective. 1

Lemma 3.5. Let R be a right almost selfinjective ring with no non-
trivial idempotent element, and let T = > Ra, where r.anng(a) = 0
and a is not invertible. Then T is a two-sided ideal of R.
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Remark 3.1. If there is no element a such that r.anng(a) =0 and a
s not invertible, then by convention T = 0.

Proof. of Lemma 3.5 Let T # 0. It is enough to show that ar €
T for each r € R and for each noninvertible element a € R with
r.anng(a) = 0. So let » € R and a be a noninvertible element of
R such that r.anng(a) = 0. If r.anng(ar) # 0, then by Lemma 3.2
ar € T. We show that if r.anng(ar) = 0, then ar is not invertible.
Let, if possible, ar is invertible. Then there exists x € R such that
xar = arr = 1. Since R has no nontrivial idempotents, R is directly
finite. Thus rxa = arx = 1, a contradiction because a is not invertible.
Hence ar € T'. 1

Theorem 3.6. Let R be a right almost selfinjective ring. Then either
R is right selfinjective or local.

Proof. By Lemma 3.4 if R has a nontrivial idempotent then R is right
selfinjective. So assume R has no nontrivial idempotents. Since R is
almost selfinjective, by Lemma 3.1, R is quasi-continuous and hence by
([13], Proposition 1.6) Rg is uniform. Let F' = {a € R | r.anng(a) =0
and a is not invertible}. If F' is empty, then a € R is invertible if and
only if r.anng(a) = 0. Since Rpg is uniform, Z(Rgr) = R\ U(R). It
follows that R\ U(R) is a two sided ideal. Hence R is local. If F'is
not empty, let 7' = > Ra. By Lemma 3.2, R\ U(R) C T. Now let

acF
t € T. We show that t is not invertible. By Lemma 3.2, t = zc for

some ¢ € F. Now if t is invertible, then c is left invertible. Since R
has no nontrivial idempotents, c¢ is invertible, a contradiction because
¢ € F. Thus T = R\U(R). Since T is a two-sided ideal of R, it follows
that R is local.

Remark 3.2. Since a right almost selfinjective ring is right quasi-
continuous, a local right almost selfinjective ring is right uniform.

Lemma 3.7. ([14], Lemma 1.13, p415) Let H be a nonidentity sub-
group of a group G. If w(KH) C J(KQG), then w(KH) = J(KH), K
1s a field of characteristic p for some prime p, and H s a p-group.

Theorem 3.8. Let KG be almost selfinjective. Then J(KG) = Z(KGkq).

Proof. By Theorem 3.6, the group algebra KG is either selfinjective or
local. If KG is selfinjective then J(KG) = Z(KGkq).

If KG is local, then J(KG) = w(KG). By Lemma 3.7, G is a
p-group. Thus for every g € G, r.annge(l — g) # 0, because g is
of finite order. Since KG is almost selfinjective, K G is uniform.
Consequently, 1 — g € Z(KGkg) for every g € G. Thus w(KG) C
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Theorem 3.9. FEvery almost selfinjective group algebra KG s selfin-
jective and hence G is finite.

Proof. Let KG be almost selfinjective. Then by Theorem 3.6, KG
is either selfinjective or local. Assume KG is local. Since KG is al-
most selfinjective, KG is quasi-continuous and hence CS. Thus, by
([3], Theorem 4.1), charK = p and G is a locally finite p-group. Hence
J(KG) is nil and consequently, by ([3], Theorem 3.5 and Corollary
3.7), KG is selfinjective. For the sake of completeness, we give here
a direct proof. Let L be a right ideal of KG and ¢ : L — KG be
a K G-homomorphism. Assume that there exists v : KG — KG
with ¢ o o = I. If keryp # 0 then, because KG is uniform, kery
Np(L) # 0. Let 0 # () €keryp Np(L). Then z = (Y o p)(z) =
¥(e(x)) = 0. Consequently, ¢(x) = 0, a contradiction. Thus kery
= 0, that is, r.anngs(¥(1)) = 0. Consequently (1) ¢ Z(KGkeg)-
Since J(KG) = Z(KGkg) by Theorem 3.8 and KG is local, ¥(1)
is invertible. Define n : KG — KG by n(a) = (1) a for ev-
ery « € KG. Then 7 is a KG-homomorphism and for every x € L,
n(z) = (1) e = (1) (Yo p(z) = (1) (¥(1)p(x)) = ¢(z). Thus

¢ can be extended to an endomorphism of KG. &

4. CONTINUOUS GROUP ALGEBRAS

In this section we study continuous group algebras. We begin with
the following Lemma.

Lemma 4.1. If KG is continuous then G is a torsion group.

Proof. Let g € G and let, if possible, o(g) be infinite. Then r.anngkg(1—
g) = 0 = lannkg(1l — g). Since KG is continuous, 1 — g is invertible
in KG, a contradiction because 1 — g € w(KG). 1

Theorem 4.2. If G s a torsion group and KG is quasi-continuous
then G s a locally finite group.

Proof. Let R = KG. To prove G is locally finite, let H be a finitely
generated subgroup of G. We apply induction on the number of gen-
erators of H. Let H = (g1) where g1 € G. Then H is finite because G
is torsion.

Assume that Hy = (g1, g2, - - - , gn) is finite and let H = (g1, 92, - - , Gn, Gnt1)-
Then

w(H) = KG(H—1)
= w(Ho) + KG(1 = gny1)-

Note that w(Hy) = KG(Hy — 1) = KGw(K Hy). Since Hy is finite,
r.anng(w(Hp)) # 0. We show that r.anng(w(H)) # 0. Let, if possible,
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ranng(w(H)) = 0. Then r.anng(w(Hy) + KG(1 — gnt1)) = 0, that
is, fIOKG N r.anng(l — g,o1) = 0. Since KG is quasi-continuous,
there exist idempotents e; and e; in R such that ﬁIOK G C. e1R and
r.anng(l — gni1) Ce e2R. Then e; RN eyR = 0. But then there exists
an idempotent e € R such that e;R = eR, eaR C (1 — e)R. Thus
l.anng(e1R) = l.anng(eR) and l.anng((1 — e)R) C l.anng(eaR), that
is, R(1 —e;) = R(1 —e) and Re C R(1 — e3). Now

R(1 —e1) = l.anng(e1R) C l.cmnR(PAIOKG) = w(Hy)

and

R(1 — e3) = l.anng(easR) C lanng(r.anng(l — gni1)) = R(1 — gnt1)-
Hence
R = Re+R(l1—e)CR(l1—e)+ R(1—e)
C w(Ho) + R(1 = gny1) = w(H),
a contradiction, because 1 ¢ w(H). Hence r.anng(w(H)) # 0 and

consequently H is finite. J

Observe that for a quasi-continuous group algebra KG, the group
G need not be torsion. For example, the group algebra of an infinite
cyclic group is quasi-continuous.

As a consequence of Lemma 4.1 and Theorem 4.2, we have the fol-
lowing theorem.

Theorem 4.3. If KG is continuous then G is a locally finite group.

Since K G is principally selfinjective if and only if G is locally finite
( [7], Theorem, p26), we have the following corollary.

Corollary 4.4. If KG s continuous then KG is principally selfinjec-
tive.

We now give an example to show that the above result is not true
for arbitrary rings.

Example 4.1. Let R = Q(z1,72,... ,Zp...), S = Q22,23 ... ,22...),
and A = ( g g ) Let f be the ring homomorphism f(a) = a for all

a€Qand f(x;) =22 Let T = {( :, f?r) ) | r, ! ER}. Then T is

R 0
is principal. Thus T is right continuous. If T is right selfinjective then

a subring of A. The only nontrivial right ideal of T is ( 00 ) which
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T is quasi-Frobenius and hence left artinian which is not true. There-
fore, T is not right selfinjective. If T is right principally injective then
T is right selfinjective, a contradiction.

For a CS group algebra, we have the following theorem.

Theorem 4.5. If G is a group such that KG s CS then the following
are equivalent.

(i) KG is continuous.

(i1) KG is principally selfinjective.

(111) G is locally finite.

We now give examples of countable locally finite groups such that
KG is not continuous.

Example 4.2. Let G = S, = f_ﬁlsn and K be any field. Then G is

a countable locally finite group and A(G) = 1. Thus the group algebra
KG is prime. By ([14], Theorem 4.8, p295) KG is semisimple. By
(114], Theorem 2.5, p368) KG is primitive. Since a primitive continu-
ous ring is simple, it follows that KG s not continuous.

Example 4.3. Let p be a prime, P = Zy~, the Priifer p-group, and
H be any finite group. Let G = P x H and R = QG. Then R 1s
not continuous. For if R is continuous then by ([6], Corollary 10.11)
R is semiperfect. Since R s reqular, R is semisimple artinian, a con-
tradiction because G'is an infinite group. In particular, QZ,~ is not
continuous.

Remark 4.1. It can be similarly shown that if p and q are distinct
primes, P = Zy~, H a finite group of order p™m where m > 1, q does
not divide m, and G = P x H then Z,G is not continuous.

We now give an example of a prime local continuous group algebra.

Example 4.4. Let p be a prime and G = Py, = ElePn where for each

n=

n, P, is a Sylow p-subgroup of Syn and P,, C P,y1. Then G is a locally
finite p-group and A(G) = 1. Let K be a field of characteristic p. Then
KG 1s a prime local continuous group algebra.

Since a prime regular continuous ring is simple, we note that there
does not exist any nontrivial prime regular continuous (equivalently,
CS) group algebra KG. We conclude this section with a question.

Question: Is it true that a regular continuous group ring (equivalently,
CS group ring) selfinjective?
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