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RINGS WHOSE cycLIC - modules are quasi-injective ‘were studied by
Ahsan [1), and fully characterized by Koehler [2] as semiperfect rings
which are finite direct sum of rings each of which is simple artinian or
rank zero maximal valuation duo rings. Following Utumi [7] Mohamed
and Bouhy [4] introduced the notion of a continuous module as a
generalization of quasi-injective module. They also characterized a ring
whose finitely generated modules are continuons as semisimple artinian.
In this paper, we study the class of rmgs whose cyclic modules are
continuous. Such rmgs are called right cc-rmgs Our main theorem is:
A semlperfcct ring R is a rlght ce-ring if any only if Ris a ﬁmte product
_of rings which are cather mmplc artuuan or r1ght va]uation rlght duo
with nil radical.

1. - Definitions, Notations and preliminaries. Al rings considered have
unities and all modules are unital right modules. A module M is
indecomposable if 0 and M are the only direct summands of M. A
module M is uniform if every two nonzero submodules of M have non-
trivial intersection.  An idempotent e of a ring R is mdccomposablc if
the right R-module eR is indecomposable. A ring'R is localif it has
exactly one maximal right ideal Rad R will stand for the Jacobson
radxcal ofa rmg B A& ring R is semlperfcct if and only if R]Rdd Ris
scmlsunplc artinian and idempotents modulo Rad R can be lifted. _Ris
a right valuatlon ring if for every two right 1deals Aand Bof R elthcr
ACBorBC A. Risa right duo ring if evcry nght ideal of R is a
two-sided ideal. If X is a subset of a ring R then XL will denote the
right annihilator of X in R.. A module M is -embedded in a module
N (notation MG N) if there is a monomorphism. of M into N.
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Following Utumi [7], a module M is called continuous if it satisfies the
following conditions:

ConpiTioN 1.1, Every submodule of M is essential in some direct
summand of M.

ConpiTioN 1.2, Ifa submodule A of M is isomorphic to a direct
summand of M, then 4 is a direct summand of M.

A ring R is called a right cc-ring if every cyclic R-module is continuous.
2. We start by characterizing local right ce-rings.

LemMMa 2.1, A homomorphic imagé of a right cc-ring is a right cc-ring.
Proor. Obvious.

PrOPOSITION 2.2. A local ring R is a right cc-ring if and only if R is a
right valuation right duo ring with nil radical.

PrOOF. Assume that R is a right ce-ring. Let A and B be right ideals
of R such that 4 ¢ B. Consider the cyclic module R/A N B. Since R
is a local ring RfA N B is an indecomposable R-module. As RIANB
is also continuous, R/A (N B is uniform by ([4]. Prop. 2.1). Now, since

(A,’AnB)r](B,_fAnB)ﬁo, '
we get Bl[AN B=0, and hence BC A. Thus Ris a right valuation

ring.

To show that R is a right duo ring, it is enough to prove that every
principal right ideal is a two-sided ideal, Consider a principal right
ideal xR and leta€ R, We examine two cases:

(i) ag Rad R. Then, by ([3]. p. 75, aisa unit. Hence axR == xR.
Suppose that axR ¢ xR. Then because R is a right valuation ring,
xR C axR. Since axR is continuous, then by Condition 1.2, xRisa
direct summand of axR. As axR is indecomposable, we get %R = axR,
a contradiction. Therefore axR C xR.

(i) «€ RadR. Then (1—4) @ RadR. Thus (1 —a)xRC xR
by (i). Now, for every r& R
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diEe= S e gpf = Xr= (1 =) ¥

Therefore axR C XR.
In either case, we get axR C xR. Hence xR is a two sided ideal of R.

Let a be an element of R which is not nilpotent. Let P bean ideal
of R which is maximal with respect to the property of being disjoint
from the infinite multiplicative set (e a%a%. o) Then P is prime.
Since, R/P is a prime right duo ring, R/P is a domain. Also, by
Lemma 2. 1, R/Pis a continuous right (R/P)-module. Then Condition 1.2
implies that R/P is a division ring. Hence P = Rad R, and therefore
a g Rad R. So that every element in Rad R is nilpotent. This
completes the proof of the “only if"” part. '

Conversely, assunie that R is a right valuation right duo ring with nil
radical. Let 4 be a (right) ideal of R. Because R isa right valuation
ring, R/A is a uniform right R-module. Hence condition 1.1 is trivially
satisfied. Let B/4 be a submodule of R/4 which is isomorphic to a
direct summand of R/A. Since R/A is uniform, B/d = RjA. Letg be
the given isomorphism of R/4 onto BJA, and let ¢(l + A) =y + 4, for
some y € B. We claim that y ¢ Rad R. Suppose not. Then y is nilpotent
and we can choose a positive integer m such that y" € Aand ym1 g A,
But then

gt 4 A=y +4=0
Since ¢ is an isomorphism, y™* -+ A = 0. Hence y"' € 4, a contra-
diction. Thus y € Rad R, so that y is a unit. Therefore B/4 = R/4,
and hence condition 1.2 holds. Thus R/A is a continuous right
R-module. This completes the proof.

LemMa 2.3. If A@ B is a continuous module, and if $:4—B isa
monomorphism, then ¢4 is a direct summand of B.

Proor. Since ¢Ad = A and A@® B is continuous, dd is a direct
summand of A® B. As¢AC B, 4 is a direct summand of B.

The following is an immediate consequence.

COROLLARY 2.4, Let A be anonzero module and B is an indecomposable
module such that A X B is continuous. Then
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R = R, D R., where Ry is semisimple artinian and R, is. a finite product of

i
right valuation right duo rings with uil radical.

Proor. The “if ™ part follows by Proposition 2.2 and Lemma 2.7.

Conversely, assume that R is a right cc-ring.  Since R is semiperfect,
R=e il R®eR® ...0 ek,
where {¢;: 1 < i < n} is a set of orthogonal indecomposable idempotents.
Let [e/R] = Ze;R, where the 2 runs over all i for which ¢;R = ¢,R.
Renumbering if necessary, we may write
R=[e,R]D[e,R]D ... D [exR],

where & << n. Using Proposition 2.6, it follows that [e;R] is an ideal,

1<i<g

k. If for some i, [¢;R] contains more than one summand, then
again by Proposition 2.6, [¢;R] is a sum of minimal right ideals of R, and
hence [¢;R] is a semisimple artinian ring. And if for some j, [¢;R] consists
of one summand, then [¢;R] is a local ring (see [3], p. 76). That [e;R] is
a right valuation right duo ring with nil radical follow by Proposition 2.2
and Lemma 2.7. This completes the proof.

ReMArK.  We expect that a right cc-ring is semiperfect but have not
been able to settle this. It can be easily shown that a right cc-ring is
semiperfect iff a regular right cc-ring does not contain any infinite family
of orthogonal idempotents. This follows from the facts that if Risa
right cc-ring then R/Rad R is a regular right ec-ring and the idempotents -~
can be lifted modulo Rad R.

(Added Dec. 20, 1978) A module M having a property (%) that for each pair of
submodules M;, M, with M, ) M, = 0, cach projection m;: My @ My > My, i=1,2,
can be extended to an endomorphism of M is called n-injective (V.K. Goel and
5.K. Jain, m-injective modules and rings whosc cyclics are n-injective, Commuanications
in Algebra, 6(1978), 59-73). Since a continuous module can be shown to #-injective,
it follows from the above remark and the Corollary 2.7 in the aforementioned paper
of Goel-Jain that a cc-ring is semi perfect. It has becn brought to our attention that
the module with the property ( # ) has been called quasi-continuous by Jermy (Louis
Jermy, Modules et anneaux quasi-continus, Cand. Math. Bull., 17 (1974), 217-228).
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