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Abstract. It is well-known that a countably injective module is Σ-injective.

In Proc. Amer. Math. Soc. 316, 10 (2008), 3461-3466, Beidar, Jain and

Srivastava extended it and showed that an injective module M is Σ-injective
if and only if each essential extension of M(ℵ0) is a direct sum of injective

modules. This paper extends and simplifies this result further and shows that

an injective module M is Σ-injective if and onIy if each essential extension of
M(ℵ0) is a direct sum of modules that are either injective or projective. Some

consequences and generalizations are also obtained.

1. Introduction

All rings considered in this paper are associative rings with identity and all
modules are right unital. A module M is said to be Σ-injective if M (α) is injective
for any cardinal α, where we denote by M (α), the direct sum of α copies of M . It
is well-known that a module M is Σ-injective if and only if M (ℵ0) is injective ([5],
[11]). Several other characterizations for an injective module to be Σ-injective are
given by Cailleau [3], Faith [5], and Goursaud - Valette [6].

Recently, Beidar, Jain, and Srivastava [2] gave the following characterization for
an injective module to be Σ-injective.

Theorem 1. [2] An injective module M is Σ-injective if and only if each essential
extension of M (ℵ0) is a direct sum of injective modules.

In this paper we extend the above theorem and provide the following new char-
acterization for an injective module to be Σ-injective in terms of the direct sums of
injective modules and projective modules.

Theorem 2. Let M be any module. Then the injective hull E(M) is Σ-injective if
each essential extension of M (ℵ0) is a direct sum of modules that are either injective
or projective.

As a consequence, we obtain that an injective module M is Σ-injective if and
only if each essential extension of M (ℵ0) is a direct sum of modules that are either
injective or projective.

It also follows from the above theorem that an arbitrary module M is Σ-injective
if and only if each essential extension of M (ℵ0) is a direct sum of injective modules.
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In this result we have not only strengthened the Theorem 1, but we have also pro-
vided a much more succinct proof for it.

In the later part of the paper, we characterize Σ-injective modules in terms of
the direct sums of quasi-injective and projective modules.

Theorem 3. Let M be an injective R-module. Then M is Σ-injective if and only
if R is right q.f.d. relative to M and each essential extension of M (ℵ0) is a direct
sum of modules that are either quasi-injective or projective.

Note that a ring R is called right q.f.d. relative to M if no cyclic right R-module
contains an infinite direct sum of modules isomorphic to submodules of M . We
shall write N ⊆e M whenever N is an essential submodule of M . The reader is
referred to [8] for the details on quasi-injective modules; and [4] and [10] for the
general references on module theory.

These characterizations of Σ-injective modules lead to new characterizations
of right noetherian rings which extend the results of Bass [1] and Beidar-Jain-
Srivastava [2].

We begin with a proof of Theorem 2, which is an adaptation of the techniques
used by Guil Asensio and Simson in [7].

2. Proof of Theorem 2

Suppose each essential extension of M (ℵ0) is a direct sum of modules that are
either injective or projective. Assume to the contrary that E(M) is not Σ-injective.
Set E = E(M). Then ⊕i∈IEi, (Ei ∼= E) is not injective for some infinite index
set I. Thus, by Baer’s injectivity criterion, there exists a right ideal A of R and a
right R-homomorphism g : A→ ⊕i∈IEi such that the set I

′
= {j ∈ I : πj ◦ g 6= 0}

is infinite, where πj : ⊕i∈IEi → Ej is the canonical projection. Because otherwise
Im(g) would be contained in a finite direct subsum of ⊕i∈IEi; and since any finite
direct sum of injective modules is injective, the map g would extend to R and this
will contradict our assumption that ⊕i∈IEi is not injective. Let J be a countably
infinite subset of I

′
. Now, choose an element aj ∈ A. Let bj = g(aj) and Nj = bjR.

Then Nj is a cyclic submodule of Ej . Since J is countable and each Nj is cyclic,
⊕j∈JNj is countably generated. Denote by Qj , an injective hull of Nj in Ej . Let
Q = E(⊕j∈JQj) be an injective hull of ⊕j∈JQj . Let π : ⊕i∈IEi → ⊕j∈JQj
be the epimorphism that carries Ei to zero if i ∈ I \ J ; whereas for all i ∈ J ,
the restriction of π to Ei, π|Ei

= β ◦ α where α : Ei → Qi is the natural direct
summand projection and β : Qi → ⊕j∈JQj is the canonical monomorphism. We
claim that the homomorphism f = π ◦ g : A → ⊕j∈JQj cannot be extended to
a homomorphism h : R → ⊕j∈JQj along the monomorphism µ : A → R. In
particular, we claim that ⊕j∈JQj is not injective. Suppose to the contrary that f
admits such an extension h. Since h(1) is contained only in a finite direct subsum
of ⊕j∈JQj , Im(f) is contained in ⊕j∈FQj for some finite subset F of J . Thus,
πj ◦ f = 0 for each j ∈ J \ F . But this is not possible as πj ◦ f : A→ Qj and each
Qj is an injective envelope of Nj in Ej .
Consider the set Ω of submodules P of Q satisfying the following three conditions:

(1) ⊕j∈JQj ⊆ P ⊆ Q,



DIRECT SUMS OF INJECTIVE AND PROJECTIVE MODULES 3

(2) P is a direct sum of injective submodules of Q,
(3) f = π ◦ g : A → ⊕j∈JQj ⊆ P cannot be extended to a homomorphism

h : R→ P along the monomorphism µ : A→ R.
Clearly, Ω is non-empty as ⊕j∈JQj ∈ Ω. Define partial order ≤ on Ω as P1 ≤ P2

if and only if P1 ⊆ P2. We claim that Ω is an inductive set under this par-
tial order. Let {Pk}k∈K be a chain in Ω. Let P = ∪k∈KPk. As ⊕j∈JQj ⊆e
Q = E(⊕j∈JQj), we have ⊕j∈JQj ⊆e P . Hence, ⊕j∈JEj ⊆e P . But, we have
⊕j∈JMj ⊆e ⊕j∈JEj , (Mj

∼= M). Therefore, ⊕j∈JMj ⊆e P . By assumption,
P = (⊕u∈UCu) ⊕ (⊕v∈U ′C

′

v), where the Cu are injective modules and C
′

v are pro-
jective modules. By Kaplansky [9], we know that each projective module is a direct
sum of countably generated modules. Hence, we have P = (⊕u∈UCu)⊕ (⊕v∈VDv),
where each Cu is an injective module and each Dv, a countably generated module.
Moreover, U and V are countable sets, because P contains a countably generated
submodule ⊕j∈JNj such that ⊕j∈JNj ⊆e P . Thus, D = ⊕v∈VDv is countably
generated. We may write D = Σn∈ND

′

n as a countable sum of finitely generated
submodules. Since D

′

1 is finitely generated, D
′

1 ⊂ ∪k∈FPk for some finite subset
F ⊂ K. Furthermore, since each Pk is a direct sum of injective submodules, P
contains an injective hull E(D

′

1) of D
′

1. Moreover, E(D
′

1)∩ (⊕u∈UCu) = 0, because
D

′

1 ∩ (⊕u∈UCu) = 0. Thus

E(D
′

1) ∼=
(⊕u∈UCu)⊕ E(D

′

1)
⊕u∈UCu

⊆ (⊕u∈UCu)⊕ (⊕v∈VDv)
⊕u∈UCu

∼= ⊕v∈VDv = D.

Clearly the above isomorphism fixes D
′

1. Thus, D contains the injective hull E(D
′

1)
of D

′

1, and therefore we have a decomposition D = E(D
′

1) ⊕ D
′′

1 . We denote
by D

′

1,n the image of D
′

n under the natural projection on D
′′

1 for n ≥ 2. Set
D

′

1,1 = D
′

1 for simplicity. It is easy to check that D = E(D
′

1,1) ⊕ Σn≥2D
′

1,n. This
yields us a decomposition P = (⊕u∈UCu)⊕E(D

′

1,1)⊕Σn≥2D
′

1,n. By applying the
same construction to P and D

′

1,2 we get P = (⊕u∈UCu) ⊕ E(D
′

1,1) ⊕ E(D
′

2,2) ⊕
Σn≥3D

′

2,n. Repeating this process, we construct an infinite set {E(D
′

n,n)}n∈N of
injective submodules of P such that for each m ∈ N, we have that (⊕u∈UCu) ⊕
(⊕mn=1E(D

′

n,n)) ⊆ P . Moreover, by construction, D
′

m ⊆ ⊕mn=1D
′

n,n, for each m ∈
N. As a consequence, D ⊆ ⊕n∈NE(D

′

n,n), so P = (⊕u∈UCu) ⊕ (⊕n∈NE(D
′

n,n)).
Thus P satisfies (2). Finally, we proceed to show that the homomorphism f =
π ◦ g : A → ⊕j∈JQj ⊆ P cannot be extended to a homomorphism h : R → P
along the monomorphism µ : A → R. Suppose, if possible, that g admits such
an extension h. Since Im(h) is finitely generated and {Pk}k∈K is a chain, there
exists a k ∈ K such that Im(h) ⊆ Pk. This yields a contradiction because Pk ∈ Ω
and therefore, by assumption, f cannot be extended to a homomorphism R→ Pk.
Hence, P ∈ Ω. This establishes our claim that Ω is an inductive set and hence by
Zorn’s Lemma, Ω has a maximal element, say P0. By hypothesis, P0 = ⊕t∈TWt,
where each Wt is injective. Let ϕt : P0 → Wt be the canonical projections. Since,
by hypothesis, f cannot be extended to a homomorphism h : R → P0, there
exists an infinite subset T ′ ⊆ T such that ϕt ◦ f 6= 0, for each t ∈ T ′

. Because
otherwise Im(f) would be contained in ⊕FWt where F is a finite set. Since ⊕FWt

is injective, f would extend to a homomorphism R → ⊕FWt ⊆ P0, yielding a
contradiction. Let us write T as a disjoint union of infinite sets T1 and T2. Denote
ϕT1 : ⊕t∈TWt → ⊕t∈T1Wt and ϕT2 : ⊕t∈TWt → ⊕t∈T2Wt. Note that ϕTi ◦ f :
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A → ⊕t∈Ti
Wt cannot be extended to a homomorphism h : R → ⊕t∈Ti

Wt for
each i ∈ {1, 2}. Because otherwise Im(h) ⊂ ⊕t∈FWt, where F is a finite set
and hence ϕt ◦ f = ϕt ◦ ϕTi ◦ f = 0, for each t ∈ Ti \ F , a contradiction. This
implies that ⊕t∈T1Wt is not injective and hence ⊕t∈T1Wt 6= E(⊕t∈T1Wt). Thus,
P0 = ⊕t∈TWt ( E(⊕t∈T1Wt)⊕ (⊕t∈T2Wt). Now, it may be observed that f cannot
be extended to a homomorphism R→ E(⊕t∈T1Wt)⊕(⊕t∈T2Wt), because otherwise
ϕT2◦f would extend to a homomorphism R→ ⊕t∈T2Wt, a contradiction. Therefore,
E(⊕t∈T1Wt) ⊕ (⊕t∈T2Wt) ∈ Ω. But this yields a contradiction to the maximality
of P0. Hence, E(M) must be Σ-injective.

Corollary 4. An injective right R-module M is Σ-injective if and only if each
essential extension of M (ℵ0) is a direct sum of modules that are either injective or
projective.

Before proceeding further, we would like to introduce some terminology.

An internal direct sum ⊕i∈IAi of submodules of a module M is called a local
summand of M , if given any finite subset F of I, the direct sum ⊕i∈FAi is a direct
summand of M .

Let M = ⊕i∈IMi be a decomposition of the module M into nonzero summands
Mi. This decomposition is said to complement direct summands if, whenever A is
a direct summand of M , there exists a subset J of I for which M = (⊕j∈JMj)⊕A.

Now we are ready to prove the following.

Corollary 5. An arbitrary right R-module M is Σ-injective if and only if each
essential extension of M (ℵ0) is a direct sum of injective modules.

Proof. Suppose each essential extension of M (ℵ0) is a direct sum of injective mod-
ules. Let E = E(M). We have M (ℵ0) ⊂e E(ℵ0). By assumption, M (ℵ0) itself is
a direct sum of injective modules. Therefore, M (ℵ0) is a local summand of E(ℵ0).
Since by Theorem 2, E is Σ-injective, so is E(ℵ0). Hence E(ℵ0) has an indecom-
posable decomposition that complements direct summands. Therefore, any local
summand of E(ℵ0) is a direct summand (see [4], 13.6). Hence, M (ℵ0) is a direct
summand E(ℵ0). Therefore, M (ℵ0) is injective and thus M is Σ-injective. The
converse is obvious. �

It is well-known that a ring R is right noetherian if and only if every direct sum
of injective right R-modules is injective [1]. From this it follows that a ring R is
right noetherian if and only if each injective right R-module is Σ-injective. As a
consequence, we have the following characterization for a right noetherian ring.

Theorem 6. A ring R is right noetherian if and only if for each injective right
R-module M , every essential extension of M (ℵ0) is a direct sum of modules that
are either injective or projective.

This extends the result of Beidar, Jain and Srivastava (Theorem 4, [2]).

Before giving the proof of Theorem 3, we recall that a module M is said to be
locally finite dimensional if any finitely generated submodule of M has finite Goldie
dimension. We say that the Goldie dimension GdimU (N) of N with respect to U
is finite, written as GdimU (N) <∞, if N does not contain an infinite independent
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family of nonzero submodules which are isomorphic to submodules of U . A module
N is said to be q.f.d. relative to U if for any factor module N of N , GdimU (N) <
∞.

3. Proof of Theorem 3

Proof. Let M be a Σ-injective module. Then M (ℵ0) is injective. Since an injective
module has no proper essential extension, we only need to show that R is right
q.f.d. relative to M . A proof for the fact that when an injective module M is
Σ-injective, R is right q.f.d. relative to M , is hidden in [2], but we will give a direct
and shorter proof here.

Assume to the contrary that R is not right q.f.d. relative to M . Then there
exists a cyclic right module C with an infinite independent family {Vi : i ∈ I} of
nonzero submodules of C such that each Vi is isomorphic to a submodule of M
and ⊕i∈IVi is essential in C. Set Mi = M , i ∈ I. Since M is Σ-injective, the
monomorphism ϕ : ⊕i∈IVi −→ ⊕i∈IMi such that ϕ(Vi) ⊆Mi for all i ∈ I extends
to a monomorphism f : C −→ ⊕i∈IMi. Now, since C is cyclic, there exists a finite
subset J ⊆ I such that f(C) ⊆ ⊕j∈JMj . Therefore, f(Vk)∩Mk ⊆ f(C)∩Mk = 0
for all k /∈ J , a contradiction to the fact that f(Vi) = ϕ(Vi) ⊆Mi for all i.

Thus, R is right q.f.d. relative to M .

Conversely, assume that R is right q.f.d. relative to M and each essential exten-
sion of M (ℵ0) is a direct sum of modules that are either quasi-injective or projective.
In view of the Theorem 2, to prove that M is Σ-injective, it suffices to show that ev-
ery essential extension of M (ℵ0) is a direct sum of modules that are either injective
or projective.

Set Mi = M , i ∈ N. Since R is right q.f.d. relative to M , it follows that
every nonzero cyclic and hence every nonzero submodule of M contains a uniform
submodule. Now, consider the set S of independent families (Mk)k∈K of uniform
injective modules 0 6= Mk ⊆ M . Suppose S is partially ordered by (Mk)k∈K ≤
(Nl)l∈L if and only if K ⊆ L and Mk = Nk for k ∈ K. By Zorn’s lemma we get
a maximal independent family (Mi)i∈N of uniform injective submodules. Clearly
⊕i∈NMi ⊆e M , because otherwise we will get a contradiction to the maximality of
this independent family of submodules. This yields that we have an independent
family {Mij : j ∈ J } of uniform injective submodules such that ⊕j∈JMij ⊆e Mi.
Set G = ⊕i,jMij . So, G ⊆e ⊕i∈NMi. Let E = E(⊕i∈NMi).

Let V be any essential extension of⊕i∈NMi. By our assumption V = (⊕k∈K1Vk)⊕
(⊕k∈K2Uk) where each Vk is quasi-injective and each Uk is projective. We will show
that each Vk is injective.

Since G ⊆e ⊕i∈NMi ⊆e V = (⊕k∈K1Vk) ⊕ (⊕k∈K2Uk), we have G ∩ Vk ⊆e Vk.
Let A =

∑n
i=1 aiR be any finitely generated submodule of E. Since R is q.f.d.

relative to M , by induction it may be shown that Gdim(
∑n
i=1 aiR) < ∞. Hence

E is locally finite dimensional. Therefore, each Vk is locally finite dimensional.
Because Vk∩G ⊂ ⊕i∈NMi, Vk∩G contains an independent family {V ′

kl
: l ∈ L′

k}
of submodules, with ⊕l∈L′

k
V

′

kl
⊆e Vk ∩ G ⊆e Vk, where each V

′

kl
is isomorphic to

a submodule of some Mi. By a standard argument using Zorn’s lemma and using
the local finite dimensionality of Vk, each V

′

kl
contains essentially a direct sum of

cyclic uniform submodules. Thus, we get an independent family {Vkl
: l ∈ Lk}

of cyclic uniform submodules, with ⊕l∈Lk
Vkl
⊆e Vk ∩ G ⊆e Vk. Take any k ∈ K
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and l ∈ Lk. Since Vkl
is a cyclic submodule of G = ⊕i,jMij , there exists a finite

subset T ⊆ N × J such that Vkl
⊆ ⊕(i,j)∈TMij . Let V̂kl

be an essential closure
of Vkl

in ⊕(i,j)∈TMij . As T is finite, ⊕(i,j)∈TMij is injective, and so is V̂kl
. Let

π : ⊕s∈KVs −→ Vk be the canonical projection. Then π|Vkl
is the identity map

and so π|bVkl
is a monomorphism. Setting Wkl

= π(V̂kl
), we see that Wkl

is an
injective submodule of Vk. Since π|Vkl

is the identity map, Vkl
⊆ Wkl

. Therefore,
{Wkl

: l ∈ Lk} is an independent family of injective submodules of Vk such that
⊕l∈Lk

Wkl
⊆e Vk.

Since R is given to be right q.f.d. relative to M , it follows that R is right q.f.d.
relative to ⊕l∈Lk

Wkl
. Now, we claim that the injective hull of ⊕l∈Lk

Wkl
coincides

with the quasi-injective hull of ⊕l∈Lk
Wkl

.
Set F = ⊕l∈Lk

Wkl
and E′ = E(F ). Let Λ = End(E′R) be the endomorphism

ring of E′R. Let x ∈ E′. Because F ⊆e E′ and xR ⊆ E′, F ∩ xR ⊆e xR.
Furthermore, since R is right q.f.d. relative to F , GdimF (xR) < ∞. This gives
GdimE′(xR) <∞, as F ⊆e E′. Therefore, xR and hence F ∩ xR has finite Goldie
dimension. So, there exists a finitely generated submodule B ⊂e xR ∩ F ⊂e xR.
As F = ⊕l∈Lk

Wkl
, there exists a finite subset J ⊆ Lk such that B ⊆ ⊕j∈JWkl

.
Since ⊕j∈JWkl

is an injective module containing an essential submodule B of xR,
E(xR) ∼= E(B) ⊂ ⊕j∈JWkl

⊂ F . Thus, E(xR) ∼= F
′

where F
′

is a submodule of

F . If ϕ : F
′ −→ E(xR) is an isomorphism, then it can be extended to

Λ
ϕ : E′ −→ E′.

So,
Λ
ϕF

′
= E(xR). This gives xR ⊂ ΛF . So, x ∈ ΛF . Thus, E′ ⊆ ΛF and hence

E′ = ΛF . This establishes our claim that the injective hull of ⊕l∈Lk
Wkl

coincides
with the quasi-injective hull of ⊕l∈Lk

Wkl
.

Therefore, E(⊕l∈Lk
Wkl

) = Vk and hence each Vk is injective. So, V is a direct
sum of modules that are either injective or projective.

Thus, we have shown that each essential extension of M (ℵ0) is a direct sum
of modules that are either injective or projective and hence by Theorem 2, M is
Σ-injective. �

As a consequence, we have the following characterization for a right noetherian
ring.

Corollary 7. A ring R is right noetherian if and only if for each injective right
R-module M , R is right q.f.d. relative to M and every essential extension of M (ℵ0)

is a direct sum of modules that are either quasi-injective or projective.
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