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Abstract

It is shown that ifM is a self-generator righR-module, thenV is non#-singular and CS iff\
is M-tight and EndMp) is a right PP ring. In particular, right nonsingular right CS-rilgsare
precisely right PP and rigR-tight. As applications we show, among others, that for any dorRain
Rl% is right CS if and only ifR is two-sided Ore domain and two-sided 2-hereditary, giving answer
to an open question known previously in special cases. As another application, we show that for a
von Neumann regular ring, the matrix ringM,, (R), n > 1, is right weakly selfinjective if and only
if R is right selfinjective.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A submoduleN of an R-moduleM is called closed inV if it has no proper essential
extension inM. Closed submodules are precisely complement submodules. Clearly, every
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direct summand oM is closed inM. A module M is called a CS-module if every closed
submodule ofM is a direct summand a#/. CS-modules are also known as extending
modules (see [5]). A ring is called a right CS-ring iR is CS as a righR-module (see
Chatters and Hajarnavis [4]). The property of being a CS-module is not preserved under
direct sums. It has been an open question for more than a decade to characterize #omains
such that the finite direct surR” of copies ofR is a right CS-module (equivalently, the

n x n matrix ring M, (R) is a right CS-ring) where is some fixed positive integer greater
than 1. Itis known that iR is a commutative integral domain, théR x R)g is CS if and

only if R is a Prufer domain [5, Corollary 12.10], and tharRiis a local (noncommutative)
domain, then(R x R)g is CS if and only ifR is a valuation domain [2, Lemma 3.6]. It

is also known that ifR is a semiprime Goldie ring, theR};, is CS for alln > 0 if and

only if R is a two-sided semihereditary ring [5, Corollary 12.18]. Theorems 4.9 and 4.15
of this paper answer the above stated question for a class of rings which include integral
domains.

Let Mz andNy be R-modules. We denote iy (M) the injective hull ofM. M is called
N-injective if for any submodul& of N and anyR-homomorphismy : K — M there
exists anR-homomorphism/ : N — M such thaty|x = ¢. It was shown by Azumaya
thatM is N-injective if and only if for anyR-homomorphisny : N - E(M), f(N) C M.

More generallyM is said to be weaklw -injective if for any R-homomorphisny : N —
E(M), there exists a submoduke Cc E(M) such thatf (N) Cc X andX >~ M (see Jain—
Lopez [10]).M is said to beV-tight if for any R-homomorphisny : N — E(M), f(N) is
embeddable i/ (see Golan—Lopez [7]M is called weakly injective (tight) iM is N-
weakly injective (respectivelw-tight) for all finitely generated module¥. A ring R
which is weaklyR-injective as a righiR-module is called weakly selfinjective. Unlike in-
jectivity the property that the rin§ = M,,(R), n > 1, is right weakly selfinjective need not
imply that R is right weakly selfinjective. lis known that for a Boolean ring if the n x n
matrix ring S = M, (R), n > 1 is right weakly selfinjective theR is right selfinjective [13,
Theorem 3.6].

In this paper we first prove that # is non-M-singular and CS, the is M-tight
and EndMp) is right PP. Furthermore, iM is a self-generator then the converse also
holds. As a particular case, it follows that right nonsingular right CS-rit@se precisely
right R-tight right PP-rings. This fact is indeed surprising: while the class of CS-modules
is closed under direct summands but not under direct sums (finite or infinite), the class
of tight (and also weakly injective) modules, in general, has the opposite properties with
respect to direct summands and direct sums.

As applications of our main theorem, we prove, among others, that

(i) for any ringR having no infinite set of nonzero orthogonal idempoteRts,is non-
singular CS rightR-module if and only ifR is Utumi and Baer if and only i R" is
a nonsingular CS lefR-module (Theorem 4.9);

(i) for any reduced ringR, R" is CS as a rightR-module if and only ifR is right
n-hereditary and left classical quotient rir@i,(R) of R is same as the right max-
imal quotient ringQr,,,(R) of R, if and only if R is right n-hereditary and right
weakly injective, if and only ifR" is CS as a leftR-module (Theorem 4.15);
and
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(i) for a von Neumann regular ring, then x n matrix ring S = M, (R), n > 1, is
right weakly S-injective if and only if S (and henceR) is right selfinjective (Theo-
rem 4.4).

2. Definitions and notation

Throughout this paper, unless otherwise stated, all rings have unity and all modules are
right unital. A CS-modulé is called continuous if a submodulé of M isomorphic to a
direct summand oM is itself a direct summand df. A moduleM is called nonsingular
if for any essential right ideak of R and any element in M, mE = 0 impliesm = 0.

A right R-moduleM has finite uniform dimension if it does not contain any infinite direct
sum of nonzero submodules. It is known that for a modujewith finite uniform dimen-
sion, there exists an integer> 1 such that every direct sum of submodules contains less
than or equal ta terms. We denote the uniform dimensionifby u.dim(M).

A right R-module N is said to be generated by a rigRtmodule M if there is an
epimorphismM® — N — 0. N is said to be subgenerated By if it is isomorphic
to a submodule of aM-generated module. For a rigiRtmodule M, o [M] will denote
the full subcategory of the category of rigRtmodules whose objects are @&tmodules
subgenerated by’ [14, Section 15, p. 118].

For any twoR-modulesM andN, M C, N will denote thatV is an essential extension
of M. Try(N) will denoted {Im(f) | f € Hom(N, M)}.

Let M be a rightR-module.M is said to be self-generator if it generates all its submod-
ules, equivalently, if. = Try (M) for every submoduld. of M. A moduleN € o[M] is
calledM-singular if there exists a modulé € o[ M] with essential submodule such that
N = K /L. Itis known that the class af/-singular modules is closed under submodules,
homomorphic images and direct sums. Hence every madlutes [ M] contains a largest
M-singular submodul€eZ; (N) [5, p. 29]. N is called nonaZ-singular if Zy;(N) = 0.

Aring R is called right continuous iR is continuousR is called a Baer ring if each
right annihilator ideal (equivalently, left annihilator ideal) is a direct summanid.called
Utumi if its right maximal quotient ring coincides with its left maximal quotient riRgis
said to be right nonsingular R is nonsingularR is said to be right-hereditary if each
n-generated right ideal is projective. Right 1-hereditary rings are called right PP-Rngs.
is called right semihereditary iR is right n-hereditary for allz > 1. R is called directly
finite if for a, b € R, ab =1 impliesba = 1. R is called (von Neumann) regular if for each
a € R there existsc € R such thatuxa = a. If, in addition,x is unit thenR is called unit
regular. A regular ringr is called abelian regular if all its idempotents are central. We note
that a regular ring is right and left nonsingular, right and left right semihereditary, and is
right (left) CS if and only if it is right (left) continuous.

For a ringR, Qha(R) (Qha(R)) Will denote the right (left) maximal quotient ring
of R; Qg (R) (Qlcl(R)) will denote the right (left) classical ring of quotients Bf Q¢ (R)
and Omax(R) will respectively denote the two-sided classical quotient ring and two-sided
maximal quotient ring oRR. For an element € R, r.anrg (a) will denote the right annihi-
lator of ¢ in R. CS-ring will mean both right and left CS and nonsingular ring will mean
both right and left nonsingular. For all other notation and terminology the reader is referred
to [5,8,11,12].
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3. Main theorem on nonsingular CS modules and rings

Recall thatV = Tren (M) is the injective hull ofM in o[M] (see [14, Section 17.9,
p. 141)). In particularM is a quasi-injectiveR-module. We first prove a result for navi-
singular CS-modules.

Theorem 3.1. Consider the following two conditions

(1) M is nonM-singularand CS
(2) M is M-tightandEnd(Mpy) is right PP.

Then(1) = (2). Moreover, ifM is a self-generator, the(2) = (1).

Proof. Let A = EndMg). We first prove (1)= (2). Let f : M — E(M) be anR-
homomorphism. Clearly liGy) € M. Moreover,M € o[M] and M is an essential sub-
module of]\:/Z. SinceZM,g\’/?) NM=ZyM)=0, it follows thatZM(A’/f) = 0. Clearly
o[M]=c[M]andZy (M) =Zu (M) =0. By [5, Section 4.1, p. 30], kef) is a closed
submodule of\1. SinceM is CS, ket f) is a direct summand a¥/. It follows that Im(f)
is isomorphic to a direct summand bf. ThusM is M-tight.

Now let g € A. By [5, Section 4.1, p. 30], kég) is a closed submodule @#. Thus
there existg € A such that = ¢2 and ketg) = eM. Now

rann(g) ={h e Allm(h) Ckerg)} ={h e A|eh=h}=eA. (1)

ConsequentlyA is right PP.

Next assume thaV is a self-generator and that the condition (2) holds. We first prove
that M is nonM-singular. Suppose thaZy (M) # 0. SinceZy (M) = Trz,, ) (M),
it follows from [5, Proposition 4.3.3, p. 31that there exists a nonzero homomorphism
g: M — Zy (M) with ker(g) essential inM. SinceA is right PP, there exists an idempo-
tente € A such thatrann (g) = eA. Using (1), we get Keg) = Trerg) (M) = eM. Hence
ker(g) is a direct summand a¥f. Since ke(g) is essential iV, it follows thate = 1. Thus
g = 0, a contradiction. Thereforgy, (M) = 0.

Now let K be a closed submodule 8. We show thaX is a direct summand aof/.
Let L be a closure ok in M. ThenL N M = K. SinceM is a guasi-injective module,
L is a direct summand o#f. ThusL = vM for somev = v2 € EndMg). Obviously,
K=LNM =Kkerl—v)Nn M is the kernel of the mapf — (1 — v)M C M. Since
M is M-tight, there exists an embedding ¢f — v)M into M. That is, there exists an
endomorphisng : M — M with ker(g) = K. Since A is right PP, ranrny(g) = ¢A for
somee = ¢2 € A. Once again using (1), we get

K=Trg (M) = Z{Im(h) |Im(h) S K} =eM.
ThusK is a direct summand a¥/ and hencé/ is CS. O

SinceRy, is a self-generator, we have the following theorem for right nonsingular right
CS-rings. The theorem is of independent interest and will be used throughout Section 4.
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Theorem 3.2. Aring R is a right nonsingular and right CS-ring if and only K is a right
R-tight right PP-ring.

Recall that a ringr is called directly finite if fora, b € R, ab =1 impliesba = 1.

Lemma 3.3. Let M be a nona/-singular module such th&nd(Mp) is directly finite. Then
M is M-tight if and only if M is weaklyM -injective.

Proof. It is enough to show that iM is M-tight, then it is weaklyM-injective. There-
fore, let M be M-tight and letf : M — E(M) be anR-homomorphism. Clearhk =
Im(f) C M. Since M is M-tight, there exists a submodule of M with L = K. Let
L’ and K’ be closures (i) of L and K, respectively. It is well known that’ and
M’ are M-injective hulls of L and K, respectively. Therefore the isomorphidin— K
can be extended to an isomorphigih— K’, and bothL’ and K’ are direct summands
of M. Let L” and K” be the complements i/ of L’ and K’, respectively. Then
M:K’@K”:L,@LN.

Since M is non-M-singular, EndMy) is von Neumann regular [5, Section 4.9(c)].
By [5, p. 35], EndMp) is right self-injective. Since, by assumption, Etk) is directly
finite, it follows from [9, Theorem 9.17] that Endl) is unit-regular. Therefore, by [9,
Theorem 4.1]L” = K”. Thus the isomorphismi — K can be extended to an automor-
phismg of M. Consequently, Iff) =K = g(L) S g(M) =M. O

Corollary 3.4. Let M be a right R-module such thaEnd(Mp) is directly finite. Suppose
that M is self-generator. TheM is non-M-singular and CS if and only iM is weakly
M-injective andEnd(Mp) is right PP.

Corollary 3.5. Let R be aright nonsingular ring such tha;,,,(R) is unit regular(equiv-
alently, directly finit¢. ThenR is right CS if and only ifR is a right weakly selfinjective
and right PP-ring.

4. Applications

In this section we give applications of Theorem 3.2 and Corollary 3.5. We first state a
well-known result.

Lemma 4.1 [5, Lemma 12.8].R%, is a CS-module if and only if the x n matrix ring
M, (R) overR is a right CS-ring.

Theorem 4.2. Let R be a rightn-hereditary ring such thaQy,,,(R) is directly finite and
let M, (R) (n > 1) be right weakly selfinjective. Theis right weakly selfinjective.

Proof. Becauser is n-hereditary,M, (R) is right PP [6, Exercise 12, p. 23]. Thus by
Corollary 3.5,M,(R) is a right CS-ring. Therefore, by Lemma 4R is CS as a right
R-module. ConsequentlRy is right CS. By Corollary 3.5R is right weakly selfinjec-
tive. O
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In particular, for a von Neumann regular ring, we can show MatR), n > 1, is right
weakly selfinjective if and only ifR is right selfinjective. First, we prove the following
lemma.

Lemma 4.3. Let R be a von Neumann regular ring. Then the following are equivalent

(1) R isright weakly selfinjective.
(2) R isright R-tight.

(3) RisrightCS.

(4) R isright continuous.

Proof. (1) = (2) is obvious. (2)= (3) follows by Theorem 3.2. (3} (4) follow by von
Neumann regularity oR. We will prove (4)= (1). Assumer is right continuous. Then
R = R1 x Ry whereR1 is right selfinjective an®; is an abelian regular continuous ring [9,
Theorem 13.17]. So, without any loss of generality, assRrigeabelian regular continuous.
Then Q. (R) = 0L .«(R) is also abelian regular. Thu®,,.,(R) is unit regular and hence
by Corollary 3.5,R is right weakly selfinjective. O

The theorem that follows generalizes the results of Al-Huzali, Jain, and Lopez—
Permouth [1, Theorem 2.11] and Tannan [13, Theorem 3.6].

Theorem 4.4. Let R be a von Neumann regular ring. Then the following are equivalent for
n>1:

(1) M, (R) isright weakly selfinjective.
(2) M, (R) isright M, (R)-tight

(3) M, (R) is aright CS-ring.

(4) R is right selfinjective.

Proof. (1) < (2) < (3) follow by Lemma 4.3. Since a regular ring is right CS if and only
if it is right continuous, (3)= (4) follows by the fact thads,, (R) is right continuous if and
only if R is right selfinjective [9, Corollary 13.19]. (4 (1) is trivial. O

We now proceed to obtain necessary and sufficient conditiongfdo be a CS-module
whenR does not possess an infinite set of nonzero orthogonal idempotents. For the conve-
nience of the reader, we state below some results that will be used latter.

Theorem 4.5[5, 12.2, p. 105]A ring R is a right nonsingular right CS-ring if and only
if R is a Baer ring such that every nonessential right ideal has nonzero right annihilator.

Theorem 4.6 [5, Corollary 12.7].A ring R is a right and left nonsingular right and left
CS-ring if and only ifR is a Baer ring for which right and left maximal quotient rings
coincide. In other words, the class of rings which are both Baer and Utumi is precisely the
class of nonsingular CS-rings.
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Theorem 4.7 [3, Lemma 8.4]Let R be a right PP ring which does not possess any infinite
set of orthogonal idempotents. Th&ris a left PP ring, each right or left annihilator i®
is generated by an idempotent, and acc and dcc hold for right annihilators.

Lemma 4.8. Let R be a right nonsingular right CS-ring and et be a ring such that
Rg Ce Sg. ThenS isright CS.

Proof. Let K be a closed rightideal &f. ThenK N R is a closed right ideal oR. SinceR

is right CS,K N R = ¢R for some idempotent in R. We claim that(1 — ¢)K = 0. Let
a € K. SinceRy C. Sg, there exists an essential right idéabf R such that G4 aE C R.

ThusaE C K N R =e¢R. Butthen(1—e)aE = 0. SinceRg and hence is nonsingular,
(1 —e)a=0. Hence(l —e)K = 0. Consequenthk C eS. AseR C. eS andeR C K,

K =eS, becaus« is closed. O

We now prove our next main result.

Theorem 4.9. Let R be a ring with no infinite set of nonzero orthogonal idempotéints
particular, if u.dim(Rg) < oco) and letrn > 1 be any positive integer. Then the following
are equivalent

(1) R% isanonsingular CS righkR-module.

(2) M, (R) is right weakly selfinjective and right PP.
(3) M, (R) is Utumi and Baer.

(4) R is Utumi and rightz-hereditary.

(5) Left side versions dfL)(4).

Proof. (1) = (2). By Lemma 4.1 M,(R) is a right CS-ring. Since® contains no infi-
nite set of orthogonal idempotents and is right CS, it is folklore thaitn(Rz) < oo and
thus the right maximal quotient rin@y,,(R) of R (and henceQy, . (M, (R))) is semi-
simple artinian. For the sake of completeness, we may sketch the proof of the fact that
u.dim(Rg) < co. Assume wim(Rg) is infinite and letK be a closed right ideal of infi-
nite uniform dimension. Becaugg¢ is closed,K = ¢R for some idempoterd € R. Write
K = K1 @ L1 where udim(K1) is infinite andLy # 0. Lete = k1 + l1. Thenk? = ka,
lf =11, k1/1 = 0, andi1k; = 0. Repeating this process wity and so on, we produce an
infinite set of orthogonal idempotents, a contradiction. Thus by CorollaryA8,%R) is
right weakly selfinjective and right PP.

(2) = (1) follows by Corollary 3.5 and Lemma 4.1. Thus &) (2).

(2) = (3) Let S = M, (R), O = Onax(R). Also, as proved in the proof of (B> (2),
Q is semisimple artinian. Let £ g € Q. Consider the element

g 1 0 ... O
0

x=[ 00 0 Oeg =m0
0 0 o ... O
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BecauseS is right weakly selfinjective, there exists = (yi;) € Ona(S) such that
ranrns(y) = 0 andx € yS. Since Qy,,,(S) is von Neumann regulay, is left invertible.
As observed abovady,.(S) is directly finite and hence is invertible. Thus there exists
P = (pij) € Omax(S) such thatpy =1 = yp. Nowx € yS implies px € S. Thus

g 1 0 ... 0
0 0 o ... O

(pij) €S,
O O o ... o

and sop;1, pi1q € R for all i with 1 <i <n. If eachp;1g = 0, then usingyp = 1, we
obtain

g 1 O 0 g 1 O 0
O 0 O 0 0O 0 O 0
.. :yp
O 0 O 0 0O 0O O 0
0 *x % ... x
— (i) * ok ... %
0 «x * *

This implies thaly = 0, a contradiction. Hencg;1g # 0 for somei, and this implies that
rRR C. Q. We now claim thaR is left nonsingular. So, let € R with l.anrng(R) C. rR.
Since lanmg (a) C l.anry (a), it follows that Lanry (@) is essential ik Q and hence i Q.
But Q is von Neumann regular. Therefare= 0. ThusR is left nonsingular. SinceR C.
rO,wWegetQ C Q’maX(R). Now g R is essential irQﬁnaX(R) andR C Q. Thereforeg O C.
RO ax(R) and s0p O C ¢ 0hx(R). SinceQ is left selfinjective,Q = Q% (R). ThusR
is Utumi and hence is Utumi. SincesS is right nonsingular and righf's, it is Baer by
Theorem 4.5.

(3) = (1) follows by Theorem 4.6.

(3)= (4) SinceM,,(R) is Utumi, so isR. As M,,(R) is right PP,R is rightn-hereditary.

(4) = (3). SinceRr is right n-hereditary and hence right PP aRdhas no infinite set
of nonzero orthogonal idempoteni®,is Baer by Theorem 4.7. ThuR is left and right
CS by Theorem 4.6. So as explained in the proof of £)(2), udim(Rg) < oo, and
u.dim(gR) < oco. Therefore, the same holds féf,(R). In particular,M,,(R) does not
possess any infinite set of nonzero orthogonal idempotents. Ringeight n-hereditary,
M, (R) is right PP [6, Exercise 12, p. 23] and so by Theorem M,/(R) is Baer. SinceR
is Utumi, M, (R) is also Utumi.

(5) < (1) follows by the symmetry of conditions in (3).0

Remark 4.1. We may remark that the statements (1)—(3) in Theorem 4.9 are equivalent if
we replace the hypothesis thRthas no infinite set of orthogonal idempotents by a weaker
hypothesis thaQy,,,(R) is a left selfinjective ring.
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The corollary that follows answers an open question on finding necessary and sufficient
conditions for(R x R)g to be CS where is any domain.

Corollary 4.10. The following are equivalent for a domait

(i) R%isCS.
(i) R isright 2-hereditary two-sided Ore domain.
(iii) Left side versions df) and(ii).

Before we give the next application, we prove another key lemma on reduced rings
(rings with no nonzero nilpotent elements) that is also of independent interest.

Lemma 4.11. Let R be a reduced ring such thaR is right 2-hereditary and every
nonessential principal right ideal has a nonzero rigkt left) annihilator. ThenQ¢,(R)
exists and is von Neumann regular.

Proof. As R is reducedxy = 0 if and only if yx = 0. Leta € R. SinceaR is projective,
r.anmg(a) = eR, e = €2 is central becaus is reduced. We claim that (k)+ e is a regular
element. For, iti(a+¢) = 0 thend(a +¢)e = 0. Thusde = 0 and hencéda = 0. This gives
d =de =0, provinga + e is regular.

Next, we claim that (2) if for some, b € R, aR + bR C. R, and tanrg(a) = eR
thena + eb is a regular element. We note that (1 —¢)R andaR +bR C (1—e)R +
ebR C, R. If (a + eb)c = 0 then by multiplying withe, ebc = 0 and soac = 0. Then
c eranrg(a) = eR, and thusc(1 — e¢)R = 0. Now ebc = 0 impliescebR = 0. Thusc
annihilates the essential right idgdl— e) R + eb R, provingc = 0 becauseR is right (as
well as left) nonsingular.

We now prove that the intersectiarR N bR of any two principal essential right ideals
aR andbR contains a regular element. Sinc® + bR is projective, the exact sequence

0—> aRNBR -5 aR x bR —> aR + bR —> 0,

where f(x) = (x, —x), splits and sa R N bR is 2-generated right ideal, saR + dR, and
is essential. Thus by claim (2) abovet de is a regular element whereanrg (c) = ¢R,
proving our claim.

Finally, we prove thaiQ(,(R) exists and is von Neumann regular. To show the exis-
tence, we proceed to prove the right Ore condition. pej € R wherep is regular. Let
ranmg(q) = (1 — u)R, u = u®. Theng = qu € uR andgq is regular in the ringtR. Also
pu is regular in the ringt R. Since each nonessential right idealRrhas a nonzero right
annihilator, the same holds in the ring direct summam®d ThusgR = quR and puR
are essential right ideals inR and hence by the result proved in the previous paragraph
g R N puR contains a regular element, say Thenx = gd = puy for somey,d € uR.
Clearly, d is regular inuR and so ranrg(d) = (1 — u)R. By claim (1),d + (1 — u) is
regular inR. Thereforep(uy) = qd = q(d + 1 — u), proving right Ore condition.

To proveQ = Qg (R) is von Neumann regular, lete R and ranrg(a) = eR, e = 2.
Recall a + e is regular and sqa + ¢)"1 € Q, anda(a + ¢)~1 = 1 — e. This gives
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a(a+e)~ta=(1—e)a=a. Thus foranyub~! e 0, we havenb=1[b(a + ¢) Lab~1 =
ab~L. This completes the proof.O

As a consequence of the above lemma, we have the following interesting corollary.

Corollary 4.12. Every reduced right 2-hereditary, right CS-ring has a right classical ring
of quotients which is von Neumann regular.

Proof. LetcR be a nonessential right ideal 8f BecauseR is right CS,cR is essential in
SOmeeR, ¢ = ¢2, ¢ # 1. This implies(1 — e)c = 0 and so ranrg (c) =r.anrg(cR) # 0. By
Lemma 4.110¢,(R) exists and is von Neumann regulai

Theorems 4.13 and 4.14 give two facts from Al-Huzali-Jain—Lopez [1, Lemma 2.10
and Theorem 3.3)], that will be needed in the proof of Theorem 4.15.

Theorem 4.13[1, Lemma 2.10]Let R be a right nonsingular ring. Then the following are
equivalent

(i) R is aright weakly-injective ring.
(i) Forall g1, g2 € O = Onax(R), there existe € R such thalgy, g2 € ¢~1R. In particu-
lar, Q is left classical quotient ring oR.

Theorem 4.14[1, Theorem 3.3]Let R be a right nonsingular ring. Then the following are
equivalent

(i) R is aright weakly-injective ring.
(i) S= M,(R) is aright weakly-injective ring.

Theorem 4.15. Let R be a reduced ring and be a positive integer greater thah Then
the following are equivalent

(1) M,(R)isrightCS.

(2) R is rightn-hereditary andQ. (R) = Qlax(R).

(3) R isrightn-hereditary and right weakly injective.
(4) M, (R) is right weakly injective and right PP.

(5 M, (R) is right weakly selfinjective and right PP.
(6) Left side versions dfL)—(5).

Under any of the equivalent conditio(l—(6), R is also an Utumi ring.

Proof. (1)= (5). We show thaQy,,,(R) is unitregular. Let4, B be rightideals irR such
thatA N B = (0). BecauseR is right CS,A C, ¢R, B C. fR wheree =¢2, f = f2. Then
eR N fR = (0). Because and f are central idempotentsaRfR = 0. ThusAB = 0. It
follows that Of,.«(R) is strongly regular [12, Proposition 21.3)]. Theref@, (M, (R))
is unit regular. Then by Corollary 3.5, we obtain (5).



636 K.I. Beidar et al. / Journal of Algebra 282 (2004) 626-637

(5) = (1). This follows by Theorem 3.2.

Under (1) or (5) we make the following observation. We already know@jat,(R) is
strongly regular. Sinc@r,,.(R) is right selfinjective, it is left selfinjective by [9, Corol-
lary 3.9]. ThereforeQy,.x(Mn(R)) = M, (Qnax(R)) is both left and right selfinjective. In
particular, it is directly finite by [9, Theorem 9.29]. Next, sindg, (R) is right weakly
selfinjective, the same argument as in the proof of=£2)3) of Theorem 4.9 shows that
RR Ce ROMax(R) and Q7 . (R) = QL. (R). ThusR and M,,(R) are Utumi. ButM, (R)
is also Baer by (1) and Theorem 4.5. &6 (R) is left CS by Theorem 4.6. This proves
that (1) (5)< left side versions of (1) and (5).

Now we prove (1)= (2). Since (1)< (5), R is right—left n-hereditary, and right—
left CS. By Corollary 4.12, botr0,(R) and Q% (R) exist and soQ(R) = OL(R) =
QclI(R). is von Neumann regular.

Now, M,,(R) C. M, (Qc(R)), and so by Lemma 4.8, the riid, (Q¢|(R)) is a right—left
CS-ring. Becaus@¢(R) is von Neumann regular (Corollary 4.120(R) is right—left
selfinjective (Theorem 4.4). Therefor@¢i(R) = Oa(R) = QﬁnaX(R).

(2) = (3) follows by Theorem 4.13 and [6, Exercise 12, p. 23].£3)4) follows by
Theorem 4.14. (43 (5) is obvious. This completes the proof
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