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REGULAR ELEMENTS DETERMINED BY GENERALIZED
INVERSES

ADEL ALAHMADI, S. K. JAIN, AND ANDRE LEROY

ABSTRACT. In a semiprime ring, von Neumann regular elements are deter-
mined by their inner inverses. In particular, for elements a,b of a von Neu-
mann regular ring R, a = b if and only if I(a) = I(b), where I(x) denotes the
set of inner inverses of x € R. We also prove that, in a semiprime ring, the
same is true for reflexive inverses.

1. INTRODUCTION AND PRELIMINARIES

In this short note, R will stand for an associative ring with unity. An element
a € R is (von Neumann) regular if there exists € R such that a = aza. Such an
element z is called an inner inverse (also called von Neumann inverse or generalized
inverse) of a. The set of regular elements of a ring R is denoted by Reg(R). A ring
R is regular if Reg(R) = R. Note that a regular ring is semiprime. In general, a
regular element may have more than one inner inverse. We denote the set of inner
inverses of a by I(a). An element x € R is called an outer inverse of a if zax = z.
Note that if z € I(a) then zax is both an inner and an outer inverse of a. An
element x € R is called a reflexive inverse of a if it is both an inner and an outer
inverse of a. Denote the set of reflexive inverses of a by Ref(a). We first obtain a
necessary and sufficient condition for I(a) C I(b) (Lemma[6) and use this to prove
that in a semiprime ring, for a,b € Reg(R), I(a) = I1(b) if and only if @ = b if and
only if Ref(a) = Ref(b). (Theorem [7 and Theorem [I01).

We begin with a few key lemmas.

The following is well-known (cf. [I] Corollary 1, Chapter 2. p. 40.)

Lemma 1. Fora € R and ag € I(a), we have I(a) = {ag +t — apataag | t € R}.

As usual, I(a) and r(a) denote respectively the left and right annihilator of
an element a € R. We define the inner annihilator of an element a € R, as
{z € R | aza = 0} and denote it by Iann(a).

The next Proposition gives a link between I(a) and Ref(a).

Proposition 2. For a € Reg(R), let p, : I(a) — Ref(a) be such that p,(x) =
zax. Then
(1) The map g is onto.
(2) Ref(a)=1I(a)al(a).
(3) If x,y € I(a) are such that ¢,(x) = @4 (y) then x —y € l(a) Nr(a).
(4) Let x € Ref(a), then v, (z) = .
Proof. This is clear. O

The next lemma is straightforward.
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Lemma 3. Let a € Reg(R) and ag € I(a). Write e = aag, f = apa and e’ =1—e,
ff=1—f. Then
(i) Iann(a) =l(a) + r(a) = Re’ + f'R.
(ii) I(a) = ap + Iann(a) = ag + Re’ + f'R.
(iii) If ap € Ref(a), then Ref(a) = ap+ fRe' + f'Re + f'RaRe'.

Proof. We simply mention that the statement (iii) can be proved by using statement
(2) of the above proposition O

2. CHARACTERIZATION OF [(a) AND Ref(a)
We can now state our first result in the following proposition.

Proposition 4. Let R be a semiprime ring. If a € Reg(R), then for any b € R,
bI(a)b is a singleton set if and only if b € RaNaR.

Proof. Firstly, suppose that there exist x,y € R such that b = za = ay and let
ap € I(a). We then have that, for any ¢ € R, b(ag + t — apataag)b = (zaao +
xat — xataag)ay = xay + ratay — xatay = xay. This shows that indeed bI(a)b is a
singleton set.

Conversely, suppose that bI(a)b = {bagb}. We then have b(ag+t—apataay)b = bagb,
for any ¢t € R. This implies that, for any t € R, we have

b(t — apataag)b = 0.
Substituting (1 —aga)t for ¢ in this equality leads to b(1 —apa)tb = 0, for any t € R.
The semiprimeness of R then implies that b(1 — aga) = 0, i.e. b = bapa € Ra.

Similarly, substituting ¢ by #(1 — aag) in the above equality gives b = aagb. In
particular, b € aR. (]

We recall the following result obtained by S.K. Jain and M. Prasad (|2]).

Lemma 5. Let R be a ring and let b,d € R such that b+ d is a Von Neumann
reqular element. Then the following are equivalent:

(1) bR®dR = (b+ d)R.

(2) Rb@ Rd=R(b+d).

(3) bBRNdR = {0} and RbN Rd = {0}.

The next proposition provides necessary and sufficient conditions as to when
I(a) C I(b), where a,b € Reg(R) and R is semiprime.

Proposition 6. Let R be a semiprime ring and let a,b € Reg(R). Then I(a) C I(b)
if and only if bBRNdR =0 and RbN Rd = 0 where a = d + .

Proof. Since I(a) C I(b), we have bab = b for every x € I(a). By Proposition
M b € RanaR. Write b = aa = af for some o, € R. Then bI(a)a = b. Next,
bI(a)d = bl(a)a—bl(a)b =b—>bI(a)b = 0. Consider now dI(a)b = al(a)b—bI(a)b =
af —bI(a)b=0b—b=0. We thus have

bI(a)d=0 and dI(a)b=0 (1)
Then, for any x € I(a), we have b+d = a = aza = (b+d)x(b+d) = bra+dxb+drd =
b+ 0 + dxd. This yields,

dI(a)d = d 2)
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Now, we proceed to show dR N bR = 0. Let bx = dy € bR N dR. Multiplying both
sides of the equality (2) by y on the right and using bx = dy we obtain dI (a)bx = dy.
As proved above, we have dI(a)b = 0. and so dy = 0. This proves our assertion.
Similarly, we show that Rb N Rd = 0. Let zb = yd € Rb N Rd. Now, multiplying
both sides of the equality (2) on the left by y, we get ydI(a)d = yd. This proves
abl(a)d = yd. Since bI(a)d = 0, we obtain yd = 0, proving RbN Rd = 0.

The converse is easy using the above lemma (]

Next, we show, in particular, that the regular elements of a semiprime ring are
equal if their sets of inner inverses are the same.

Theorem 7. Let R be a semiprime ring and a,b € Reg(R). Then I(a) = I(b) if
and only if a = b.

Proof. We only need to prove the sufficency. So assume that I(a) = I(b). Proposo-
tion [6] implies that we can write a = b+ d with bRNdR =0, RdN Rb = 0. Lemma
then gives that (b+d)R = bR® dR. Since I(a) = I(b) we also have al(b)a = {a}
and bI(a)b = {b} and Propositiond implies that Ra = Rb and aR = bR. This leads
toaR = (b+d)R=bR®dR = aR®dR. This forces d to be zero and hence a = b,
as desired.

Alternatively we may invoke Hartwig’s result (cf. [3]) in place of Lemma[El This
was pointed out to us by T.Y. Lam. Indeed, by our Propositiond we have aR = bR
and Ra = Rb, and thus by invoking Hartwig’s result, there exist units u,v € R
such that b = au = va. If x € I(a) = I(b), then aza = a and bxb = b. The last
equality implies that vazau = au and hence va = a. Thus b = a. O

Corollary 8. Let R be a reqular ring. Then I(a) = I1(b) if and only if a = b.

Remark 9. Pace Nielsen remarked that, in the above theorem, the semiprime
hypothesis can be replaced by the assumption that a — b is regular. So assume
I(a) = I(b), and a — b € Reg(R). As in our Proposition ] we obtain

bt(1 — aap)b =0, (1)

for any ¢t € R. If by is a reflexive inverse of b, we obtain, for any ¢ in R, ataagb =
(abra)taapb = a(b1bby)ataagb = aby (bbiataagb). Replace t by byat in (1) and obtain

ataaoh = atb. (2)

For z € I(a — b) we have bzb = bza + azb — aza + a — b. Using this equality we
compute

bzb = bzbaghb = (bza + azb — aza + a — b)aph = bzaapb + azb — azaapb + aapb — b.

Using formulae (1) and (2) we get aaph = b so that bR C aR. Symmetric arguments
leads to aR = bR and Ra = Rb and Hartwig’s theorem finishes the proof.
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3. REFLEXIVE INVERSES FOR SEMIPRIME RINGS

We conclude by characterizing the equality of Ref(a) = Ref(b), and obtain the
analogue of Theorem [7] for reflexive inverses of semiprime rings.

Theorem 10. Let R be a semiprime ring such that a,b € Reg(R). Then Ref(a) =
Ref(b) if and only if a = b.

Proof. Let ag € Ref(a) = Ref(b). Since a = 0 if and only if Ref(a) = 0, we
may assume that a and b are not zero. Since bRef(a)b = bRef(b)b = b and
Ref(a) = I(a)al(a), we have that, for any ¢ in R,

b(ao + t — apataag)a(ao + t — apataap)b = b (1)

Replacing ¢ by (1 — apa)t and noting that a(1 — aga) = 0, we obtain successively
b(apa + (1 — apa)ta)(ag + (1 — apa)t)b = b and b(apa + (1 — aga)ta)(ap)b = b and
s0 bagb + b(1 — aga)taaph = b. Since bagb = b this gives b(1 — apa)taagh = 0 for all
t € R. This leads to

aaob(1 — aga)taaph(l — apa) =0 Vi € R.

The semiprimeness of R implies that aagb(1 — aga) = 0. Left multiplying by
ag € ref(a), we get that apb(1 — apa) = 0 and hence since ag € I(b) we conclude
that b(1 — apa) = 0. Therefore we obtain that Rb C Ra and by symmetry Ra C Rb
and hence Ra = Rb. In the same way replacing ¢ by ¢(1 — aap) in (1), we obtain
aR = bR. The Hartwig’s Theorem then gives us that there exist invertible elements
u,v € R such that a = bu and b = av. The argument at the end of the proof of the
semiprime case (cf. Theorem [7]) proves the theorem. (]

We now give an example of a ring, showing that without the semipriness hy-
pothesis both of the above theorems are false.

Example 11. Consider the Fs-algebra
R =TFs(a,b,z | aza = a,brb = b, rax = x,zbx = z,a* = b*> = ab = 2% = 0)

This ring is finite and {a, b, z, ax, bz, xa, xb, axb, bxa} is a basis of R as an Fa-vector
space. It is easy to determine that r(a) = r(b){a,b, ax, bz, axb, bxa), l(a) = I(b) =
(a,b, za,xzb,axb,bxa) I(a) = ¢+ R, I(b) = z + R, ref(a) = {a} = ref(b). Of
course, (RaR)? = 0, showing that R is not semiprime.

The next corollary is a direct consequence of Theorems [7] and

Corollary 12. Let a,b be elements of a semiprime ring R. Then the following are
equivalent:

(1) I(a) = I(b),

(2) a =0,

(3) ref(a) = Ref(b).

Remark 13. We close with the following comment. The question of the equality
of two elements in a regular ring that have the same set of inner inverses arose
while the authors have been working on the question: if, for a regular self-injective
ring R, I(¢) = I(a) + I(b), a,b,c € R, is it true that ¢ is unique? If not, obtain a
complete solution for ¢c. We will discuss that in another paper which is in progress.
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