NEW CHARACTERIZATION OF Σ -INJECTIVE MODULES

K. I. BEIDAR, S. K. JAIN, AND ASHISH K. SRIVASTAVA

ABSTRACT. We provide a new characterization for an injective module to be Σ -injective.

1. INTRODUCTION

In his paper [4], Carl Faith introduced the concept of Σ -injectivity and defined an injective module M to be Σ -injective if every direct sum of copies of M is injective. It turns out that such an R-module M provides a good deal of information about the structure of a ring R. For example, R is right noetherian if and only if every injective right R-module is Σ -injective [5]. If R is an integral domain then the injective hull $E(R_R)$ of R is Σ -injective if and only if R is a right Ore domain [4]. Goursaud-Valette showed that if a ring R admits a faithful Σ -injective module then R is a right Goldie ring [6].

The following characterizations are well-known for an injective module to be Σ -injective.

Theorem 1. (Cailleau [3], Faith [4]) For an injective module M_R , the following are equivalent:

- (1) M is Σ -injective.
- (2) M is countably Σ -injective.
- (3) R satisfies ACC on the set of right ideals I of R that are annihilators of subsets of M.
 - (4) M is a direct sum of indecomposable Σ -injective modules.

The purpose of this paper is to provide the following new characterization for an injective module to be Σ -injective.

Theorem 2. Let M_R be an injective module. Then the following statements are equivalent:

- (a) M is Σ -injective.
- (b) There exists an infinite cardinal α such that every essential extension of $M^{(\alpha)}$ is a direct sum of injective modules.

²⁰⁰⁰ Mathematics Subject Classification. 16D50, 16P40.

Key words and phrases. Injective modules, Σ -injective modules, essential extensions, right noetherian rings.

First author is deceased.

2. PRELIMINARIES

All rings considered in this paper have unity and all modules are right unital. We denote by E(M), the injective hull of M. We shall write $N\subseteq_e M$ whenever N is an essential submodule of M. A submodule L of M is called an essential closure of a submodule N of M if it is a maximal essential extension of N in M. A submodule K of M is called a complement if there exists a submodule U of M such that K is maximal with respect to the property that $K \cap U = 0$. Given a cardinal α and a module N, we denote by $N^{(\alpha)}$ the direct sum of α copies of the module N. A module N is said to be Σ -injective provided that $N^{(\alpha)}$ is injective for any cardinal α . We say that the Goldie dimension of N with respect to U, $G \dim_U(N)$, is less than or equal to n, if for any independent family $\{V_j: j \in \mathcal{J}\}$ of nonzero submodules of N such that each V_j is isomorphic to a submodule of U, we have that $|\mathcal{J}| \leq n$. Next, the notation $G \dim_U(N) < \infty$ means that $G \dim_U(N) \leq n$ for some positive integer n. A module N is said to be q.f.d. relative to U if for any factor module N of N, $G \dim_U(N) < \infty$. We say R is right q.f.d. relative to M if R_R is q.f.d. relative to M.

We first start with a key lemma.

Lemma 3. Let M be an injective module and suppose there exists an infinite cardinal α such that every essential extension of $M^{(\alpha)}$ is a direct sum of injective modules. Then

(a) Given a direct sum $G = \bigoplus_{i \in \mathbb{N}} M_i$, $M_i \cong M$, and nonzero injective submodules V_i of M_i , $i \in \mathbb{N}$, there exists an infinite subset $\mathcal{J} \subseteq \mathbb{N}$ and nonzero injective submodules $V_i^{'} \subseteq V_j$, $j \in \mathcal{J}$, such that $\bigoplus_{j \in \mathcal{J}} V_j^{'}$ is injective.

In particular, if $\{V_i : i \in \mathbb{N}\}$ is an independent family of uniform injective submodules of M then $\bigoplus_{j \in \mathcal{J}} V_j$ is injective for some infinite subset $\mathcal{J} \subseteq \mathbb{N}$.

(b) R is right q.f.d. relative to M.

Proof. (a) Set E = E(G). Since V_i is an injective submodule of M_i , $M_i = V_i \oplus M_i'$ for some submodule $M_i' \subseteq M_i$. Therefore, $G = (\bigoplus_{i \in \mathbb{N}} V_i) \oplus (\bigoplus_{i \in \mathbb{N}} M_i')$. Let H and H' be essential closures of $\bigoplus_{i \in \mathbb{N}} V_i$ and $\bigoplus_{i \in \mathbb{N}} M_i'$ in E, respectively. Clearly, $E = H \oplus H'$. If $\bigoplus_{i \in \mathbb{N}} V_i = H$, then there is nothing to prove.

Consider now the case when $\bigoplus_{i\in\mathbb{N}}V_i\neq H$. Pick $x\in H\setminus\bigoplus_{i\in\mathbb{N}}V_i$. Let Q be a submodule of H maximal with respect to the properties that $\bigoplus_{i\in\mathbb{N}}V_i\subseteq Q$ and $x\notin Q$. Set $P=Q\oplus H'$ and note that $E/P=(H\oplus H')/(Q\oplus H')\cong H/Q$ is a subdirectly irreducible module.

Now, $G \subseteq_e E = H \oplus H'$ and $P = Q \oplus H' \subseteq_e H \oplus H'$. Therefore, $G \subseteq_e P$. Hence, by our assumption, $P = \bigoplus_{k \in \mathcal{K}} W_k$, where each W_k is a nonzero injective module. Since $P \subseteq_e E$ and $P \neq E$, P is not injective and so $|\mathcal{K}| = \infty$.

We claim that for any finite subset \mathcal{L} of \mathcal{K} and for any positive integer n there exists i > n such that $V_i \cap (\bigoplus_{k \in \mathcal{L}} W_k)$ is not essential in V_i .

Suppose the above claim is not true. Then there exists a finite subset $\mathcal{L} \subseteq \mathcal{K}$ and an integer $n \geq 1$ such that $V_i \cap (\bigoplus_{k \in \mathcal{L}} W_k) \subset_e V_i$ for all i > n. Let A be an essential closure of $\bigoplus_{i>n} (V_i \cap (\bigoplus_{k \in \mathcal{L}} W_k))$ in $\bigoplus_{k \in \mathcal{L}} W_k$ which is injective and so A is also injective.

We have $\bigoplus_{i\geq n+1}(V_i\cap\bigoplus_{k\in\mathcal{L}}W_k)\subset_e A\subset\bigoplus_{k\in\mathcal{L}}W_k$. This gives, $V_1\oplus V_2\oplus\ldots\oplus V_n\oplus_{i\geq n+1}(V_i\cap\bigoplus_{k\in\mathcal{L}}W_k)\subset_e V_1\oplus V_2\oplus\ldots\oplus V_n\oplus A\subset E=H\oplus H'$. Therefore, $(V_1\oplus V_2\oplus\ldots\oplus V_n\oplus_{i\geq n+1}(V_i\cap\bigoplus_{k\in\mathcal{L}}W_k))\cap H\subset (V_1\oplus V_2\oplus\ldots\oplus V_n\oplus A)\cap H\subset H$.

Since $V_i \cap (\bigoplus_{k \in \mathcal{L}} W_k) \subset_e V_i$ for all i > n, we have $V_1 \oplus V_2 \oplus \ldots \oplus V_n \oplus_{i \geq n+1} (V_i \cap \bigoplus_{k \in \mathcal{L}} W_k) \subset_e \oplus_{i \in \mathbb{N}} V_i \subset_e H$. Setting $B = V_1 \oplus V_2 \oplus \ldots \oplus V_n \oplus A$, we obtain that $B \cap H = (V_1 \oplus V_2 \oplus \ldots \oplus V_n \oplus A) \cap H$ is an essential submodule of H. Furthermore, $B \cap H \subset_e B$. For, if $0 \neq b \in B$ then $b = v_1 + \ldots + v_n + a$ where $v_i \in V_i$, $a \in A$. If a = 0, $b \in H$ and we are done. If $a \neq 0$ then there exists $r \in R$ such that $0 \neq ar \in \bigoplus_{i \geq n+1} (V_i \cap \bigoplus_{k \in \mathcal{L}} W_k)$ and hence $ar \in \bigoplus_{i \geq \mathbb{N}} V_i$. Thus $0 \neq br \in H$.

Therefore, $B \oplus H^{'} \subseteq_{e} E$. But since both B and $H^{'}$ are injective, $B \oplus H^{'}$ is injective. Thus $E = B \oplus H^{'} = (V_{1} \oplus V_{2} \oplus ... \oplus V_{n} \oplus A) \oplus H^{'} \subseteq Q + P + H^{'} = P$, a contradiction because $P \subset E$ and $P \neq E$.

This proves that for any finite subset \mathcal{L} of \mathcal{K} and for any positive integer n there exists i > n such that $V_i \cap (\bigoplus_{k \in \mathcal{L}} W_k)$ is not essential in V_i .

We now proceed by induction to construct a sequence of submodules $\{W_{k_j}': j=1,2,...,n,...\}$ such that each W_{k_j}' is a nonzero injective submodule of W_{k_j} isomorphic to a submodule V_{i_j}' of V_{i_j} , where $k_1,k_2,...,k_n,...$ are distinct elements of \mathcal{K} and $1 \leq i_1 < i_2 < ... < i_n < ...$

Let $i_1 \geq 1$ be arbitrary. Now $V_{i_1} \subset \bigoplus_{k \in \mathcal{K}} W_k$ implies, there exists a nonzero submodule V'_{i_1} of V_{i_1} such that V'_{i_1} is isomorphic to a submodule W'_{k_1} of W_{k_1} for some $k_1 \in \mathcal{K}$. Clearly, we may choose V'_{i_1} to be injective submodule of V_{i_1} .

For $n \geq 1$, assume that we have a sequence $\{W_{k_j}': j=1,2,...,n\}$ with the above stated property. By the fact proved above, there exists $i_{n+1} > i_n$ such that $X = V_{i_{n+1}} \cap (\bigoplus_{k \in \mathcal{K}_1} W_k)$ is not essential in $V_{i_{n+1}}$, where $\mathcal{K}_1 = \{k_1,k_2,...,k_n\}$. Let X' be a complement of X in $V_{i_{n+1}}$. Then $X' \cap (\bigoplus_{k \in \mathcal{K}_1} W_k) = X' \cap X = 0$. We have $X' \subset V_{i_{n+1}} \subset (\bigoplus_{k \in \mathcal{K}_1} W_k) \oplus (\bigoplus_{k \in \mathcal{K}_2} W_k)$, where $\mathcal{K}_2 = \mathcal{K} \setminus \mathcal{K}_1$. Let $\pi: (\bigoplus_{k \in \mathcal{K}_1} W_k) \oplus (\bigoplus_{k \in \mathcal{K}_2} W_k) \longrightarrow \bigoplus_{k \in \mathcal{K}_2} W_k$ be the projection. Then for $\pi|_{X'}: X' \longrightarrow \bigoplus_{k \in \mathcal{K}_2} W_k$, $ker(\pi|_{X'}) = X' \cap (\bigoplus_{k \in \mathcal{K}_1} W_k) = 0$. Therefore, X' is isomorphic to some submodule C of $\bigoplus_{k \in \mathcal{K}_2} W_k$. So, the module C contains a nonzero submodule which is isomorphic to a submodule F of $W_{k_{n+1}}$ for some $k_{n+1} \in \mathcal{K}_2$. Denote by $W'_{k_{n+1}}$ an essential closure of F in $W_{k_{n+1}}$. Since F is isomorphic to a submodule of the injective module $V_{i_{n+1}}$, we conclude that $W'_{k_{n+1}}$ is isomorphic to a submodule of $V_{i_{n+1}}$ as well. Obviously the family $\{W'_{k_j}: j=1,2,...,n+1\}$ satisfies the required property. This completes the induction argument.

Now set $\mathcal{K}' = \{k_1, k_2, ..., k_n, ...\}$. Choose disjoint subsets \mathcal{K}'_1 and \mathcal{K}'_2 of \mathcal{K} such that $\mathcal{K} = \mathcal{K}'_1 \cup \mathcal{K}'_2$ and $\mathcal{K}' \cap \mathcal{K}'_1 = \{k_1, k_3, ..., k_{2n+1}, ...\}$. Clearly, $\mathcal{K}' \cap \mathcal{K}'_2 = \{k_2, k_4, ..., k_{2n}, ...\}$.

Now we claim that either $\bigoplus_{k \in \mathcal{K}_1'} W_k$ is injective or $\bigoplus_{k \in \mathcal{K}_2'} W_k$ is injective.

Set $V=\oplus_{k\in\mathcal{K}_1'}W_k$ and $W=\oplus_{k\in\mathcal{K}_2'}W_k$. We have $P=V\oplus W$. Let \widehat{V} and \widehat{W} be essential closures of V and W respectively in E. Clearly, both \widehat{V} and \widehat{W} are injective. Now, $P=V\oplus W\subset_e\widehat{V}\oplus\widehat{W}\subset E$. Because $P\subset_eE$, we obtain $E=\widehat{V}\oplus\widehat{W}$. Therefore, $E/P=(\widehat{V}\oplus\widehat{W})/(V\oplus W)\cong(\widehat{V}/V)\times(\widehat{W}/W)$. Since E/P is shown to be subdirectly irreducible in the beginning of the proof, we have either $V=\widehat{V}$ or $W=\widehat{W}$. This proves our claim.

Thus, we may assume, without loss of generality, that the module $\bigoplus_{k \in \mathcal{K}_1'} W_k$ is injective. Since $\bigoplus_{n=0}^{\infty} W_{k_{2n+1}}'$ is a direct summand of $\bigoplus_{k \in \mathcal{K}_1'} W_k$, we get that $\bigoplus_{n=0}^{\infty} W_{k_{2n+1}}'$ is injective. Recalling that $\bigoplus_{n=0}^{\infty} V_{i_{2n+1}}' \cong \bigoplus_{n=0}^{\infty} W_{k_{2n+1}}'$, we conclude that $\bigoplus_{n=0}^{\infty} V_{i_{2n+1}}'$ is an injective module. This completes the proof.

(b) Assume to the contrary that there exists a cyclic right R-module C with $G \dim_M(C) = \infty$. Then C has an independent family $\{C_i : i = 1, 2, ...\}$ of nonzero submodules such that each C_i is isomorphic to a submodule of M. Set D_i to be closure of C_i in M. Then $\{D_i : i = 1, 2, ...\}$ is a family of injective submodules of M. Therefore by (a), there exists an infinite subset $\mathcal{J} \subseteq \{1, 2, ...\}$ and nonzero injective submodules $D_j' \subseteq D_j$, $j \in \mathcal{J}$, such that $\bigoplus_{j \in \mathcal{J}} D_j'$ is injective. Set $C_j' = C_j \cap D_j'$, $j \in \mathcal{J}$ and note that $C_j' \neq 0$. Since $\bigoplus_{j \in \mathcal{J}} D_j'$ is injective, the natural inclusion $C_j' \longrightarrow \bigoplus_{j \in \mathcal{J}} D_j'$ can be extended to a homomorphism $f : C \longrightarrow \bigoplus_{j \in \mathcal{J}} D_j'$. Because C is cyclic, there exists a finite subset $\mathcal{K} \subseteq \mathcal{J}$ such that $f(C) \subseteq \bigoplus_{k \in \mathcal{K}} D_k'$, and so $C_j' = f(C_j') \subseteq f(C) \cap D_j' = 0$ for all $j \notin \mathcal{K}$. Therefore, $C_j \cap D_j' = 0$ for all $j \notin \mathcal{K}$, which contradicts that $C_i \subset_e D_i$ for each i. Therefore, R is right q.f.d. relative to M.

3. PROOF OF THEOREM 2

Proof. (b) \Longrightarrow (a). Suppose that $M^{(\lambda)}$ is not injective for some infinite cardinal λ . Set $E = E(M^{(\lambda)})$, pick $x \in E \backslash M^{(\lambda)}$ and let L = xR. By Lemma 3 (b), R is right q.f.d. relative to M. From this it follows that every nonzero cyclic and hence every nonzero submodule of M contains a uniform submodule. Now, consider the set S of independent families $(M_k)_{k \in \mathcal{K}}$ of uniform injective modules $0 \neq M_k \subseteq M$. Suppose S is partially ordered by $(M_k)_{k \in \mathcal{K}} \leq (N_l)_{l \in \mathcal{L}}$ if and only if $\mathcal{K} \subseteq \mathcal{L}$ and $M_k = N_k$ for $k \in \mathcal{K}$. By Zorn's lemma we get a maximal independent family $(M_i)_{i \in \mathcal{I}}$ of uniform injective submodules. Clearly $\bigoplus_{i \in \mathcal{I}} M_i \subseteq_e M$, because otherwise we will get a contradiction to the maximality of this independent family of submodules. This yields that we have an independent family $\{W_i \mid i \in \mathcal{I}\}$ of uniform injective submodules of $M^{(\lambda)}$ such that each W_i is isomorphic to a submodule of M and $\bigoplus_{i \in \mathcal{I}} W_i \subseteq_e M^{(\lambda)}$.

Now we proceed to show that there is a sequence of pairwise distinct elements i_1,i_2,\dots in $\mathcal I$ and an independent family of direct summands V_1,V_2,\dots of E such that $V_j\cong W_{i_j}$ and $\pi_{j-1}(L)\cap V_j\neq 0$ for all $j\geq 1$, where $\mathcal I_0=\mathcal I$, and $\mathcal I_j=\mathcal I_{j-1}\setminus\{i_j\}$ for $i_j\in\mathcal I$. Set $E_0=E$, E_j as an essential closure of $\oplus_{i\in\mathcal I_j}W_i$ in E_{j-1} , $\pi_0=id_E$, and π_j as the projection of E onto E_j along $V_1\oplus \dots \oplus V_j$.

Since $\bigoplus_{i\in\mathcal{I}}W_i\subseteq_e M^{(\lambda)}\subset_e E$ and L is a nonzero submodule of E, we have $L\cap(\bigoplus_{i\in\mathcal{I}}W_i)\neq 0$. This implies L contains a nonzero submodule X_1 isomorphic to

a submodule of some W_i , say, W_{i_1} . Then, $E(X_1) \cong W_{i_1}$. Set $V_1 = E(X_1)$. Clearly, $L \cap V_1 \neq 0$.

For $n \geq 1$, assume that we have a sequence $\{V_i\}$, $1 \leq j \leq n$, of submodules of M with the above stated properties. Since $x \notin M^{(\lambda)}$, $L = xR \nsubseteq \bigoplus_{i=1}^n V_i = \ker(\pi_n)$, and so $\pi_n(L) \neq 0$. Now $\bigoplus_{i \in \mathcal{I}_n} W_i \subset_e E_n$ and because $\pi_n : E \longrightarrow E_n$, we have $\pi_n(L) \cap (\bigoplus_{i \in \mathcal{I}_n} W_i) \neq 0$ Now $\pi_n(L) \cap (\bigoplus_{i \in \mathcal{I}_n} W_i)$ contains a nonzero cyclic uniform submodule, say, C. This implies, there exists a finite subset $\mathcal{K} = \{k_1, k_2, ..., k_m\} \subseteq$ \mathcal{I}_n such that $C \subseteq \bigoplus_{k \in \mathcal{K}} W_k$. Let V_{n+1} be the essential closure of C in $\bigoplus_{k \in \mathcal{K}} W_k$. Since $\bigoplus_{k\in\mathcal{K}}W_k$ is injective, V_{n+1} is injective. So, $\bigoplus_{k\in\mathcal{K}}W_k=V_{n+1}\oplus D$ for some submodule D of $\bigoplus_{k \in \mathcal{K}} W_k$. Since V_{n+1} is injective, it has the exchange property. Therefore, $\bigoplus_{k\in\mathcal{K}}W_k=V_{n+1}\oplus(\bigoplus_{k\in\mathcal{K}}W_k')$ for some submodules W_k' of W_k . Since W'_{k} are injective and each W_{k} is indecomposable, either $W'_{k} = 0$ or $W'_{k} = W_{k}$. We recall that V_{n+1} is uniform because it is the closure of uniform module C. Comparing the Goldie dimension on each side of $\bigoplus_{k \in \mathcal{K}} W_k = V_{n+1} \oplus (\bigoplus_{k \in \mathcal{K}} W_k')$, we get that there exists exactly one index $k_t \in \mathcal{K}$ such that $W'_{k_t} = 0$, and for all $k(\neq k_t) \in \mathcal{K}$, $W'_k = W_k$. So, $\bigoplus_{k \in \mathcal{K}} W_k = V_{n+1} \oplus (\bigoplus_{k \in \mathcal{K} \setminus \{k_t\}} W_k)$. This yields $V_{n+1} \cong (\bigoplus_{k \in \mathcal{K}} W_k)/(\bigoplus_{k \in \mathcal{K} \setminus \{k_t\}} W_k) \cong W_{k_t}$. Setting $i_{n+1} = k_t$, we have $V_{n+1} \cong$ $W_{i_{n+1}}$. Note that $\pi_n(L \cap V_{n+1}) \subseteq \pi_n(L) \cap \pi_n(V_{n+1})$. Since π_n is identity on E_n and $V_{n+1} \subset E_n$, $\pi_n(L) \cap \pi_n(V_{n+1}) = \pi_n(L) \cap V_{n+1}$. Also, as $\ker(\pi_n) = V_1 \oplus ... \oplus V_n$, $\pi_n(L \cap V_{n+1}) \neq 0$. Therefore, $\pi_n(L) \cap V_{n+1} \neq 0$. Thus, we have obtained a sequence of submodules $\{V_i\}$, j=1,2,...,n+1, with the required properties. This completes the induction argument.

Now we claim that there exists a properly ascending chain $N_0 \subset N_1 \subset ... \subset$ $N_j \subset \dots$ of submodules of L such that $N_0 = 0$ and $E(N_j/N_{j-1}) \cong V_j$ for all $j \geq 1$. Set $N_1 = L \cap V_1$. Since V_1 is a uniform injective module, $E(N_1/N_0) \cong V_1$. By construction of the family $\{V_j\}$, $\pi_1(L) \cap V_2 \neq 0$ and since π_1 is onto, there exists a uniquely determined submodule N_2 of L such that $\pi_1(L) \cap V_2 = \pi_1(N_2)$. Since $\pi_1(N_1) = 0$ but $\pi_1(N_2) \neq 0$, we obtain $N_2 \supset N_1$. Next, by isomorphism theorem, $\pi_1(N_2) \cong N_2/N_2 \cap V_1$. Now $N_2 \cap V_1 = N_2 \cap V_1 \cap L = N_2 \cap N_1 = N_1$. So, $N_2/N_1 \cong N_1 \cap N_2 \cap V_1 \cap L = N_2 \cap N_1 \cap V_2 \cap V_2 \cap V_2 \cap V_1$. $\pi_1(N_2) = \pi_1(L) \cap V_2$ and hence $E(N_2/N_1) \cong V_2$. Because π_2 is onto, there exists a uniquely determined submodule N_3 of L such that $\pi_2(N_3) = \pi_2(L) \cap V_3$. Note that $\pi_2 \pi_1 = \pi_2$. Since $\ker(\pi_2) = V_1 \oplus V_2$, $\pi_2(N_2) = \pi_2(\pi_1(N_2)) = \pi_2(\pi_1(L) \cap V_2) = 0$ but $\pi_2(N_3) \neq 0$, we obtain $N_3 \supset N_2$. Now, $\pi_2(N_3) = \pi_2(\pi_1(N_3)) \cong \frac{\pi_1(N_3)}{\pi_1(N_3) \cap (V_1 \oplus V_2)}$. The natural map $\varphi: \pi_1(N_3) \longrightarrow N_3/N_1$ given by $\pi_1(n_3) \longmapsto n_3 + N_1$ for $n_3 \in N_3$ is well-defined because if $n_3 \in \ker(\pi_1|_{N_3}) = V_1 \cap N_3 = N_1$, then $n_3 \in N_1$. This is clearly an isomorphism. Furthermore, the restriction of φ to $\pi_1(N_3) \cap (V_1 \oplus V_2)$ is isomorphism onto N_2/N_1 . For, if $\pi_1(n_3) \in V_1 \oplus V_2$ then $\pi_1(n_3) = v_1 + v_2$ for some $v_1 \in V_1$ and $v_2 \in V_2$. This gives $\pi_1(n_3) = \pi_1(v_2) = v_2$ and hence $\pi_1(n_3) \in \pi_1(L) \cap V_2 = \pi_1(N_2)$. So, the restriction of φ to $\pi_1(N_3) \cap (V_1 \oplus V_2)$ sends $\pi_1(n_3) \longmapsto n_2 + N_1, n_3 \in N_3, n_2 \in N_2$ where $\pi_1(n_2) = \pi_1(n_3)$. Clearly, this is also well-defined. For, if $\pi_1(n_3) = 0$, then $\pi_1(n_2) = 0$ and this gives $n_2 \in V_1 \cap N_2 = N_1$. Therefore, $\pi_2(N_3) \cong \frac{\pi_1(N_3)}{\pi_1(N_3) \cap (V_1 \oplus V_2)} \cong \frac{N_3/N_1}{N_2/N_1} \cong N_3/N_2$. Now, $N_3/N_2 \cong \pi_2(N_3) = (N_3) = (N_$ $\pi_2(L) \cap V_3$ and hence $E(N_3/N_2) \cong V_3$.

Continuing in this fashion, we create a properly ascending chain $N_0 \subset N_1 \subset ... \subset N_j \subset ...$ of submodules of L such that $N_0 = 0$ and $E(N_j/N_{j-1}) \cong V_j$ for all $j \geq 1$.

Since $\{V_j\}$, $j \in \mathbb{N}$ is an independent family of uniform injective modules isomorphic to a submodule of M, by above lemma, there exists an infinite subset $\mathcal{J} \subseteq \mathbb{N}$ such that $\bigoplus_{j \in \mathcal{J}} V_j$ and hence $\bigoplus_{j \in \mathcal{J}} E(N_j/N_{j-1})$ is injective. Set $N = \bigcup_{i \in \mathbb{N}} N_i$. Given $j \in \mathcal{J}$, let $\alpha_j : N \longrightarrow E(N_j/N_{j-1})$ be the canonical mapping. Let $\alpha : N \longrightarrow \bigoplus_{j \in \mathcal{J}} E(N_j/N_{j-1})$ be defined by $\alpha(x) = \{\alpha_j(x)\}_{j \in \mathcal{J}}$ for all $x \in N$. Since $\bigoplus_{j \in \mathcal{J}} E(N_j/N_{j-1})$ is injective, we may extend α to $\alpha^* : L \longrightarrow \bigoplus_{j \in \mathcal{J}} E(N_j/N_{j-1})$. As L is finitely generated, there exists a finite subset $\mathcal{K} \subseteq \mathcal{J}$ such that $\alpha^*(L) \subseteq \bigoplus_{k \in \mathcal{K}} E(N_k/N_{k-1})$. For $j \in \mathcal{J} \setminus \mathcal{K}$ and $x \in N_j$ we have $\alpha_j(x) = x + N_{j-1} = 0$, showing that $N_{j-1} = N_j$, a contradiction.

Therefore, $M^{(\lambda)}$ is injective for any cardinal λ and hence M is Σ -injective.

(a) \Longrightarrow (b) is obvious.

This completes the proof of Theorem 2.

As a consequence of Theorem 2, we have the following characterization for a right noetherian ring.

Theorem 4. Let R be a ring. Then the following are equivalent:

- (i) R is right noetherian.
- (ii) For each injective module M_R , there exists an infinite cardinal α such that every essential extension of $M^{(\alpha)}$ is a direct sum of injective modules.
- *Proof.* (i) \Rightarrow (ii) is obvious. (ii) \Rightarrow (i) follows from Theorem 2 and by Faith-Walker [5] that a ring R is right noetherian if and only if every injective right R-module is Σ -injective.

Remark 5. The above result generalizes a result of Beidar-Ke [2] which states that a ring R is right noetherian if and only if every essential extension of a direct sum of injective right R-modules is again a direct sum of injective right R-modules. Note that [2] indeed generalizes a result of Bass [1] that a ring is right noetherian if and only if every direct sum of injective modules is injective.

Acknowledgment. We would like to thank the referees for several helpful suggestions and comments.

REFERENCES

- [1] H. Bass, Finitistic Dimension and a Homological Generalization of Semiprimary Rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [2] K. I. Beidar and W. -F. Ke, On Essential Extensions of Direct Sums of Injective Modules, Archiv. Math. 78 (2002), 120-123.
- [3] A. Cailleau, Une caracterisation des modules sigma-injectifs, C. R. Acad. Sci. Paris Ser. A-B 269 (1969), A997-999.
- [4] C. Faith, Rings with ascending chain condition on annihilators, Nagoya Math. J. 27 (1966), 179-191.

- [5] C. Faith and E. A. Walker, Direct-Sum Representations of Injective Modules, Journal of Algebra 5 (1967), 203-221.
- [6] J. M. Goursaud and J. Valette, Sur l'enveloppe des anneaux de groupes reguliers, Bull. Math. Soc. France 103 (1975), 91-103.
- [7] C. Megibben, Countable injectives are $\Sigma\text{-injective},$ Proc. Amer. Math. Soc. 84 (1982), 8-10.

Department of Mathematics, Ohio University, Athens, Ohio-45701, USA $E\text{-}mail\ address:}$ jain@math.ohiou.edu

Department of Mathematics, Ohio University, Athens, Ohio-45701, USA $E\text{-}mail\ address$: ashish@math.ohiou.edu