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RIGHT-LEFT SYMMETRY OF RIGHT NONSINGULAR
RIGHT MAX-MIN CS PRIME RINGS
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In this article we show, among others, that if R is a prime ring which is not a domain,
then R is right nonsingular, right max-min CS with uniform right ideal if and only if R
is left nonsingular, left max-min CS with uniform left ideal. The above result gives, in
particular, Huynh et al. (2000) Theorem for prime rings of finite uniform dimension.
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1. INTRODUCTION

A ring in which each closed right ideal is a direct summand is called a right CS
ring. For example, right self-injective rings and right continuous rings are right CS
rings. A ring R is called right min CS if every minimal closed (equivalently, uniform
closed) right ideal is a direct summand of R. A left min CS ring is defined similarly.
We refer to Dung et al. (1994) for background on CS rings and modules. We call
a ring R to be a right max CS if every maximal closed right ideal with nonzero left
annihilator is a direct summand of R. We define left max CS ring similarly. It was
shown by Huynh et al. (2000, Theorem 1) that a prime right Goldie, right CS ring
R with right uniform dimension at least 2 is left Goldie, and left CS. In this article,
we generalize this result to infinite uniform dimension. We consider a prime right
nonsingular right CS ring of possibly infinite uniform dimension with a uniform
right ideal. We show that for a prime ring R with right uniform dimension at least 2,
R is a right nonsingular right max and right min CS ring with uniform right ideal if
and only if R is a left nonsingular, left max and left min CS ring with uniform left
ideal.

2. DEFINITIONS AND PRELIMINARIES

Throughout this article, unless otherwise stated, all rings have unity and all
modules are unital. A submodule K of an R-module M is said to be a complement
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to a submodule N of M if K is maximal with respect to the property that K ∩ N = 0.
A submodule N of an R-module M is called essential in M , denoted by N ⊆e M ,
if for any nonzero submodule L of M , L ∩M �= 0. A submodule N of M is called
closed in M if it has no proper essential extension in M . Closed submodules are
precisely complement submodules (Lam, 1999, Proposition 6.32). A nonzero module
M is called uniform if any two nonzero submodules of M intersect nontrivially.
Clearly, uniform closed submodules of M are precisely minimal closed submodules
of M . A ring R is called right max-min CS if R is both right max CS and right min
CS. Similarly, we define left max-min CS.

A right R-module M has finite uniform dimension if it does not contain any
infinite direct sum of nonzero submodules. It is known that for a module M with
finite uniform dimension, there exists a positive integer n such that every direct
sum of nonzero submodules of M does not have more than n summands, and
the least positive integer n with this property is called the uniform dimension of
M . We denote the uniform dimension of M by u�dim�M�. A ring R has finite
right (left) uniform dimension if R has finite uniform dimension as a right (left)
R-module.

A right quotient ring of a ring R is a ring Q which contains R as a subring
such that QR is a rational extension of RR (see Goodearl, 1976, p. 57). For a right
nonsingular ring R, Q is a right quotient ring of R if R is a subring of Q and
QR is an essential extension of RR. A left quotient ring is defined similarly. For a
ring R, the maximal right (left) quotient ring of R is denoted by Qr

max�R� (Q
l
max�R�),

see Goodearl (1976). For a right nonsingular ring R, the injective hull E�RR� is
a ring that coincides with the right maximal quotient ring Qr

max�R� (Goodearl,
1976, Corollary 2.31). Furthermore, Qr

max�R� is a von Neumann regular ring and
it is injective as a right module over itself as well as over R. A ring Q is called
a two-sided quotient ring of R if Q is both a left and right quotient ring of R.
Nonsingular ring will mean both right and left nonsingular. For a nonsingular
ring R� the maximal two-sided quotient ring of R, denoted by Qt

max�R�, is the
maximal essential extension of RR in Qr

max�R� (equivalently, Q
t
max�R� is the maximal

essential extention of RR in Ql
max�R�), see Utumi (1963). It is known that for a

right quotient ring Q of a right nonsingular ring R, the lattices of closed right
ideals of R and Q are isomorphic under the correspondence A → A ∩ R, where
A is a closed right ideal of Q (Johnson, 1961, Corollary 2.6). For simplicity, we
will denote Qr

max�R��Q
l
max�R� and Qt

max�R� by Qr�Ql, and Qt respectively. Observe
that, from the above lattice isomorphism, each minimal closed right ideal of a right
nonsingular ring R is of the form eQr ∩R, where eQr is a minimal right ideal of
Qr . A ring R is called right (left) Goldie ring if the right (left) uniform dimension
of R is finite and R has ascending chain condition on right (left) annihilators.
A ring R is called directly finite (or “von Neumann finite”, or “Dedekind finite”)
if ab = 1 implies ba = 1, for all a, b ∈ R. More generally, a module M over a
ring R is called directly finite (or “von Neumann finite”, or “Dedekind finite”) if
its endomorphism ring End�MR� is directly finite (or “von Neumann finite”, or
“Dedekind finite”), see Goodearl (1979). For a subset S of a ring R, r�annR�S�
and l�annR�S� will denote the right annihilator and left annihilator of S in R,
respectively. For a right R-module M , Z�M� will denote the singular submodule
of M .
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3. THE RESULTS

Lemma 3.1. Let R be a prime ring with a uniform right ideal. If R is right min CS
and right nonsingular, then R is left nonsingular.

Proof. By our assumption R has a minimal closed right ideal, say U . Then U =
eQr ∩ R, where eQr is a minimal right ideal of Qr and e = e2 ∈ Qr . Since R is a right
min CS ring, U = fR, for some idempotent f in R. So we have fR= eQr ∩R and
hence fQr = eQr . Since fRf ⊆ fQrf and fQrf is a division ring, fRf is a domain.
We claim that Z�Rf� = 0. Assume on the contrary, that Z�Rf� �= 0. Let 0 �= xf ∈
Z�Rf�. Then there exists an essential left ideal E of R such that Exf = 0. So, for
each 0 �= rf ∈ E ∩ Rf , we have rfxf = 0. This implies �frf��fxf� = 0. Since fRf is
a domain, frf = 0 or fxf = 0. If fxf �= 0, then frf = 0, for all rf ∈ E ∩ Rf . This
implies �Rf��E ∩ Rf� = 0. Since R is prime and E ∩ Rf �= 0, Rf = 0, which is a
contradiction. Thus fxf = 0, for all xf ∈ Z�Rf�. But then we have �Rf��Z�Rf�� = 0,
and so, since R is prime, Rf = 0, a contradiction. Thus, Z�Rf� = 0. Now if Z�RR� �=
0, then Z�RR� is essential as a left ideal of R. So Z�RR� ∩ �Rf� �= 0. This means
Z�Rf� �= 0, a contradiction. Thus R is left nonsingular. �

Lemma 3.2 (Utumi, 1963, Lemma 1.4). Let R be a nonsingular ring. Then R has the
maximal two-sided quotient ring Qt. Qt may be regarded as the subring of Ql consisting
of elements x such that the set of y ∈ R with xy ∈ R forms a large (essential) right ideal
of R.

Lemma 3.3 (Utumi, 1963, Lemma 2.5). Let R be a prime nonsingular ring with a
uniform left ideal and a uniform right ideal. Then the two-sided quotient ring Qt is a
primitive ring with nonzero socle.

Theorem 3.1. Let R be a prime ring with a uniform right ideal. If R is nonsingular
and right max CS, then R is left min CS.

Proof. By Lemma 3.2, R has the maximal two-sided quotient ring Qt. If R has
no uniform left ideal, then R is trivially a left min CS ring. So, we assume that R
has uniform left ideals and so R has minimal closed left ideals. Let U be a minimal
closed left ideal of R. Then by Lemma 3.3, Qt is primitive and has nonzero
socle. Thus, by the lattice isomorphism (Johnson, 1961, Corollary 2.6) U =Qte∩R,
where Qte is a minimal left ideal of Qt and e = e2 ∈ Qt, because Soc�QtQt� is
essential as a left ideal of Qt. Define F = �a ∈ R � �1− e�a ∈ R�. Since RR ⊆e Q

t
R,

F ⊆e RR. Clearly, �1− e�Qt is a maximal closed right ideal of Qt, and hence �1− e�
Qt ∩ R is a maximal closed right ideal of R. We have l�annR��1− e�Qt ∩ R� =
l�annR��1− e�F� = �x ∈ R � x�1− e�F = 0� = �x ∈ R � x�1− e� ∈ Z�Qt

R�� = �x ∈ R �
x�1− e� = 0� = l�annQt �1− e� ∩ R = Qte ∩ R = U �= 0. Then by our hypothesis,
�1− e�Qt ∩ R = fR, for some idempotent f ∈ R. Therefore, U = R�1− f� is a direct
summand of R. Thus R is a left min CS ring. �

The next theorem is probably the best right-left symmetry of the CS property
that one can obtain for prime right nonsingular right CS rings with uniform right
ideals.
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Theorem 3.2. Let R be a prime ring with uniform right ideal. If R is right nonsingular
and right CS, then R is left min CS.

Proof. The proof follows from Lemma 3.1 and Theorem 3.1. �

Theorem 3.3 (Lam, 1999, Theorem 6.48). Let R be a ring such that both RR and RR
are CS modules. Then R is Dedekind finite.

The example that follows shows that one cannot obtain the full strength of
left CS property, in general, for right CS rings.

Example 3.1. Let VD be a right vector space over a division ring D with dimVD = �.
Let R = Hom�VD� VD�. It is well known that R is a regular primitive right self-injective
ring which is not a Dedekind finite ring. If R is a left CS ring, then by Theorem 3.3, R is
Dedekind finite, a contradiction. Thus, R is not a left CS ring. This example shows that
R in Theorem 3.2 need not be left CS.

Lemma 3.4. Let R be a right nonsingular prime ring which is not a domain. If R is
right min CS with a uniform right ideal, then R has a uniform left ideal.

Proof. Since R has a uniform right ideal, R has a minimal closed right ideal, say U .
Then by the lattice isomorphism and right min CS, U = e1Q

r ∩ R = e1R where e1Q
r

is a minimal right ideal of Qr and e1 = e21 ∈ R. So, R = e1R⊕ �1− e1�R and Qr =
e1Q

r ⊕ �1− e1�Q
r . Since Soc�Qr

Qr � ⊆e Q
r
Qr , �1− e1�Q

r contains a minimal right ideal,
say e2Q

r where e2 is idempotent. We may choose e2 ∈ R because R is a right min
CS ring. Hence, �1− e1�Q

r = e2Q
r ⊕ e3Q

r� e3 = e23 ∈ Qr . Thus, Qr = e1Q
r ⊕ e2Q

r ⊕
e3Q

r and R = e1R⊕ e2R⊕ fR where f = f 2 ∈ R.
We will show that e1Re1 is a left Ore domain. If e1Re1 = e1Q

re1 we are done
because e1Q

re1 is a division ring. So, assume that e1Re1 � e1Q
re1.

We have:

R = e1R⊕ e2R⊕ fR 	


e1Re1 e1Re2 e1Rf

e2Re1 e2Re2 e2Rf

fRe1 fRe2 fRf


 and

Qr = e1Q
r ⊕ e2Q

r ⊕ e3Q
r 	



e1Q

re1 e1Q
re2 e1Q

re3

e2Q
re1 e2Q

re2 e2Q
re3

e3Q
re1 e3Q

re2 e3Q
re3


 �

Let 0 �= a1 ∈ e1Q
re1\e1Re1 and 0 �= a2 ∈ e2Re1. Set � =

(
a1 0 0
a2 0 0
0 0 0

)
. Let I =(

e1Q
re1 e1Q

re2 e1Q
re3

0 0 0
0 0 0

)
be a nonzero right ideal of Qr and note that �I is a nonzero right

ideal of Qr . Since Qr is prime and has a nonzero socle, �I contains a minimal right
ideal of Qr , say N . So, R ∩ N is a minimal closed right ideal of R. Consequently,
R ∩ N is generated by an idempotent e∗ ∈ R. Therefore, there exists an element
� =

( x1 x2 x3
0 0 0
0 0 0

)
∈ M such that �� =

(
a1x1 a1x2 a1x3
a2x1 a2x2 a2x3
0 0 0

)
= e∗ ∈ R, where xi ∈ e1Q

rei. Hence,
aixj ∈ eiRej , and aix3 ∈ eiRf , for i� j = 1� 2. Note that at least one xi is nonzero.
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After squaring this matrix and comparing the corresponding entries of the first row
of this matrix and the first row of its square we get the following equations:

a1x1a1x1 + a1x2a2x1 = a1x1 (1)

a1x1a1x2 + a1x2a2x2 = a1x2 (2)

a1x1a1x3 + a1x2a2x3 = a1x3� (3)

We claim that x1 �= 0. For if x1 = 0, then we have two cases. First case,
x2 �= 0. Then from equation (2) we get a1x2a2x2 = a1x2. Since a1 �= 0, x2a2x2 = x2.
As x2 ∈ e1Q

re2, there exists x∗2 ∈ e2Q
re1 such that x2x

∗
2 = e1 because e1Q

r 	 e2Q
r .

Consequently, x2a2 = e1. Multiplying this with a1 on the left we get (a1x2)a2 =
a1e1 = a1. From this and a1x2 ∈ e1Re2, it follows that a1 ∈ e1Re1, a contradiction.
Second case, x2 = 0. Then we must have x3 �= 0. Thus, equation (3) becomes
a1x3 = 0, and so, x3 = 0, a contradiction. Hence, x1 �= 0. Thus, equation (1) becomes
x1a1 + x2a2 = e1, and hence

x1a1 = e1 − x2a2 (4)

Let 0 �= y ∈ e1Re2 ⊂ e1Q
re2. Since e1Q

r 	 e2Q
r , there exists y′ ∈ e2Q

re1 such
that y′y = e2. Then ya2 �= 0. For, if ya2 = 0, then y′�ya2� = �y′y�a2 = 0, and so,
a2 = 0, a contradiction. So, �ya2�x1 �= 0. Now 0 �= y�a2x1� ∈ �e1Re2��e2Re1� ⊆ e1Re1.
Also ya2x2 ∈ e1Re2, and a2 ∈ e2Re1 which implies ya2x2a2 ∈ e1Re1. Next, multiplying
(4) on the left by ya2 we get �ya2x1�a1 = ya2 − ya2x2a2. Consequently, a1 =
�ya2x1�

−1�ya2 − ya2x2a2�. Thus, e1Re1 is a left Ore domain.
We claim Re1 is uniform. Assume to the contrary that Re1 is not uniform.

This means there exists nonzero submodules A and B of Re1 such that A ∩ B = 0.
This implies e1A ∩ e1B = 0. Since e1A and e1B are left ideals of the left Ore domain
e1Re1, either e1A = 0 or e1B = 0. Consequently, either BA = 0 or AB = 0. This is a
contradiction because R is a prime ring. This completes the proof. �

Remark 3.1. We note that Lemma 3.4 is not true, in general. For let R be a right Ore
domain which is not a left Ore domain, see (Goodearl, 1976). If R contains a uniform
left ideal, then by Lemma 3.3, the maximal two-sided quotient ring Qt is a primitive ring
with nonzero socle. This implies that Qt is a division ring, and hence R is a left uniform
ring, a contradiction.

As a consequence of Lemmas 3.1, 3.3, and 3.4, we have the following corollary.

Corollary 3.1. Let R be a right nonsingular prime ring with a uniform right ideal. If
R is right min CS, then R has the maximal two-sided quotient ring Qt. Moreover, if R
is not a domain, then Qt is a primitive ring with nonzero socle.

We are now ready to prove our stated goal of the right-left CS ring property
of certain classes of prime rings.

Theorem 3.4. For a nondomain prime ring R, the following conditions are
equivalent:

(1) R is right nonsingular, right max-min CS with a uniform right ideal;
(2) R is left nonsingular, left max-min CS with a uniform left ideal.
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Proof. �1� ⇒ �2� R is left nonsingular by Lemma 3.1 and by Theorem 3.2 R is left
min CS ring. By Lemma 3.4, R has a left uniform ideal. Therefore, we need only to
prove that R is a left max CS ring. R has Qt by Lemma 3.2, and Soc�Qt

Qt � �= 0 by
Lemma 3.3. Let M be a maximal closed left ideal of R with r�annR�M� �= 0. Then
M = M∗ ∩ R, for some maximal closed left ideal M∗ of Qt with r�annQt �M∗� �= 0.
Since 0 �= Soc�Qt

Qt � ⊆e Q
t, r�annQt �M∗� contains a minimal right ideal, say eQt, e =

e2 ∈ Qt. Then Qt�1− e� ⊇ l�annQt �r�annQt �M∗�� ⊇ M∗. This implies M∗ =Qt�1− e�
by maximality of M∗. We have eQt ∩ R = fR, for some idempotent f ∈ R by �1�.
Then eQt = fQt by minimality of eQt. By taking the left annihilator of both
sides we get Qt�1− e� = Qt�1− f�. Thus, M = M∗ ∩ R = Qt�1− f� ∩ R = R�1− f�.
Therefore, R is right max CS ring.

�2� ⇒ �1� is dual to �1� ⇒ �2�. �

From the proof of �1� ⇒ �2� in Theorem 3.4, one may obtain the following
Corollary.

Corollary 3.2. Let R be a prime ring which is not a domain. If R is right nonsingular
right min CS with a uniform right ideal, then R is left nonsingular left max CS with a
uniform left ideal.

Lemma 3.5 (Goodearl, 1976, Theorem 2.38). Let R be a nonsingular ring. Then the
maximal right and left quotient rings of R coincide if and only if every closed one-sided
ideal of R is an annihilator.

Lemma 3.6 (Faith, 1967, Theorem 8, p. 73). Let R be a prime ring satisfying
Z�RR� = 0, and containing a minimal closed right ideal. Then the maximal right quotient
ring of R is isomorphic to the full ring of linear transformations in a right vector space
over a division ring.

Lemma 3.7 (Dung et al., 1994, Corollary 7.8, p. 59). A module with finite uniform
dimension is extending if and only if it is uniform extending.

For a prime ring with finite uniform dimension, we have the following
proposition.

Proposition 3.1. Let R be a prime ring with a uniform right ideal. If R is right CS
and right nonsingular, then the following are equivalent:

(1) R is left CS;
(2) u�dim�RR� < �.

Proof. �1� �⇒ �2� By Lemmas 3.5 and 3.6, Ql = Qr 	 Hom�VD� VD� for some right
vector space V over a division ring D. Then Qr(and also Ql) is a semisimple artinian
ring. Thus u�dim�RR� < � (also u�dim�RR� < �).

�2� �⇒ �1� follows by Theorem 3.2 and Lemma 3.7. �

We may now derive the Theorem of Huynh et al. (2000) in the following
proposition.
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Proposition 3.2. Let R be a prime right nonsingular right CS ring with a uniform
right ideal. If u�dim�RR� = n, where n ≥ 2, then u�dim�RR� = n. Thus, a prime right
Goldie, right CS ring R with right uniform dimension at least 2, is left Goldie, and
left CS.

Proof. Since R is right CS, R = e1R⊕ · · · ⊕ enR where each eiR is uniform and
�ei�

n
i=1 is a system of orthogonal idempotents of R. Since R is nonsingular (Lemma

3.1), R has the maximal two-sided quotient ring Qt. By Lemma 3.4, R has a uniform
left ideal, and so Qt has a nonzero socle (Lemma 3.3). Thus, Qt = e1Q

t ⊕ · · · ⊕ enQ
t

where each eiQ
t is a minimal right ideal of Qt. Therefore, Qt is a semisimple artinian

ring. Since RR ⊆eRQ
t, u�dim�RR� = n. �
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