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METHODS
Data collection

Data
• Data were retrieved from existing data in our lab. 
Participants
• 25 native Chinese adults
• All had normal hearing
Stimulus
• /i2/, rising pitch contour, 250 ms, human speech
Brain Wave Recording Procedure
• 3 gold-plated electrodes (high forehead, low forehead,

right mastoid)
• Participant resting or fast asleep prior to recording
• Stimulus intensity: 70 dB SPL in the right ear
• 8000 accepted sweeps

Machine-Learning Algorithms
FFR Features
• Six FFR features (Frequency Error, Slope Error,

Tracking Accuracy, Spectral Amplitude, Pitch
Strength, and Root Mean Square Ratio) were
extracted from each recording and served as the key
predictors in the identification of a response.

• Brain waves accumulated (from the first sweep) up to
the first 500 sweeps were considered FFR absent;
brain waves accumulated (from the first sweep) up to
the last 1000 sweeps (i.e., from 7001 – 8000 sweeps)
were considered FFR present.

• These 6 FFR features, along with the supervised
responses, were used to train the algorithms.

Classification Learner App
• A 10-fold cross-validation procedure was employed

by using a Classification Learner App in MATLAB.
• 23 machine-learning algorithms were tested.
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• The Frequency Following Response (FFR) is a
subcortical electrophysiological response of brain activity
that can be recorded by placing recording pads on the
participants head (Skoe & Kraus, 2010). Unlike other
cortical responses which are highly variable and affected
by sleep (Song et al., 2011), the FFR is an extremely
reliable measure which is unaffected by these dilemmas.

• Utilization of FFR recordings can be a key evaluator in
hearing testing among individuals who cannot provide
accurate behavioral responses. By generating a pass/fail
system based on an algorithm one can not only save
testing time but also preserve efficiency and create a new
gold standard.

• The purpose of this study was to evaluate multiple
machine-learning algorithms in order to explore the
possibilities of machine learning in FFR detection.

• Machine learning is a type of artificial intelligence that
provides computer systems with the capabilities to train
and learn how to analyze data without the need for human
judgement or monitoring.

• This method is best achieved through an algorithm where
data can be trained as a baseline to develop the program,
from there one can then continuously feed more data into
the model as the detection accuracy increases.

• By retrieving existing data from our lab, this study was
designed to determine the feasibility of using machine-
learning algorithms to detect the presence or absence of
an FFR, and given that, to compare the performance (e.g.,
sensitivity, specificity, false positive, and false negative
rates) across several machine-learning algorithms that
were included in this study.

• The ultimate goal of this line of research is to eliminate
the need for human judgement, therefore establishing a
protocol for more of an automated system which will be
able to determine the presence or absence of an FFR.
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INTRODUCTION RESULTS

• Results indicate that the utilization of the
machine-learning algorithms can provide
accurate predictions in whether or not an
FFR was present in a recording.

• In this study, a fixed approach was utilized
by using the top 1000 and bottom 500
sweeps as the determinant of a response.
Future directions of this study will be to
manipulate the cutoff sweeps to reveal the
lowest sweep count to where a response
can be accurately detected.

• When the lowest number of sweeps was
determined by using one of the more
efficient algorithms to detect the presence
of a response, one can then obtain an FFR
by using the least amount of time possible,
and thus to the patient’s time.
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Figure 2 Depicted here is a parallel coordinate plot
showing the distribution of the feature values across all
predictors. Frequency error (FE) is a measure of the
accuracy of pitch-encoding during stimulus presentation.
Slope Error (SE) depicts the brainstem’s ability to
preserve the overall shape of the pitch contour of the
stimulus signal. Tracking Accuracy (TA) reflects the
overall faithfulness of pitch tracking between the stimulus
and response f0 contours. Spectral Amplitude (SA)
measures the frequency amplitude of a recording along the
F0 contour of the stimulus. Pitch Strength (PS) denotes the
robustness of the phase-locking phenomenon in the human
brainstem. Root-mean-square (RMS) amplitude measures
the overall amplitude of a recording (See Jeng et al., 2011
for details of these FFR features). Corresponding author: Breanna N. Hart
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Figure 1 Seen here are spectrograms ranging from 10, 250, 500, 1000, 2000, 3000, 5000, and 8000 sweeps. Depicted here in this figure is the progression of the spectrogram. With
accumulating sweeps one can visualize it showing no response to showing a response at as early as 2000 sweeps.

Human Judgement 

Present Absent

Test 
Result

Positive True Positive 
(a)

False Positive 
(b)

Negative False Negative 
(c)

True Negative 
(d)

Type I (alpha) error = False-Positive rate = (100 – specificity) %
Type II (beta) Error = False-Negative rate = (100 – sensitivity) %

1857
(61.3%)

0
(0%)

0
(0%)

1172
(38.7%)

1844
(60.9%)

81
(2.7%)

13
(0.4%)

1091
(36%)

1857
(61.3%)

1172
(38.7%)

0
(0%)

0
(0%)

Figure 3 Operating characteristics of a test. 

Figure 4 Examples of a good-performance algorithm (left panel, Logistic Regression algorithm), a moderate-performance algorithm
(middle panel , Coarse KNN algorithm), and a poor-performance algorithm (right panel , Boosted Trees algorithm).
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Table 2 Performance of 23 machine-learning algorithms.

Machine-Learning 
Algorithm

True 
Positive

False 
Positive

False 
Negative

True 
Negative

Model 
Accuracy

Complex Tree 1854 2 3 1170 99.8%
Medium Tree 1854 2 3 1170 99.8%
Simple Tree 1853 22 4 1170 99.1%

Linear Discriminant 1636 121 221 1051 88.7%
Quadratic

Discriminant 1797 1 60 1171 97.9%

Logistic Regression 1857 0 0 1172 100%
Linear SVM 1857 1 0 1171 99.9%

Quadratic SVM 1857 3 0 1169 99.9%
Cubic SVM 1857 2 0 1170 99.9%

Fine Gaussian SVM 1857 2 0 1170 99.9%
Medium Gaussian 

SVM 1857 9 0 1163 99.7%

Coarse Gaussian 
SVM 1857 36 0 1136 98.8%

Fine KNN 1857 2 0 1170 99.9%
Medium KNN 1857 7 0 1165 99.7%
Coarse KNN 1844 81 13 1091 96.8%
Cosine KNN 1857 14 0 1153 99.5%
Cubic KNN 1857 6 0 1166 99.8%

Weighted KNN 1857 4 0 1168 99.8%
Boosted Trees 1857 1172 0 0 61.3%
Bagged Tree 1857 0 0 1172 100%

Subspace
Discriminant 1648 198 209 974 86.5%

Subspace KNN 1857 9 0 1163 99.7%
RUS Boosted Trees 1854 354 3 818 88.2%
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