
• A significant improvement (p < 0.05)  was observed in the 
extraction of FFRs for all nSweep conditions, except for 8000 
sweeps, when silent intervals were excluded from the SSNMF 
algorithm, as opposed to when silent intervals were included in 
the algorithm. 

• Although improvements in algorithm performance were 
anticipated when no silent intervals were included, the extent to 
which the algorithm performance has improved was quite 
impressive, with a 11.78% increment in FFR Enhancement and a 
20.69% decrement in Noise Residue. 

• These results not only quantify the effects of silent intervals on 
the extraction of human FFRs, but also provide recommendations 
for designing and improving the SSNMF algorithm in future 
research.

• Limitations of this study and future directions
• The applicability of this algorithm on different types of 

stimuli, such as the /da/ stimulus that has been widely used 
in FFR research, remains unexplored.

• As the SSNMF can be combined with other ML models, the 
extent to which the effects of silent intervals on the 
algorithm performance may propagate and influence the 
outcome of other ML models remains unknown

• For clarity, the SSNMF algorithm written in the Python 
programming language and a sample recording are available on 
the first author’s (FCJ) GitHub repository 
https://github.com/fjeng/ffr_ssnmf_feasibility. 
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• The Frequency-Following Response (FFR) is a scalp-recorded 
electroencephalographic (EEG) measurement that can be used to 
evaluate how the human brain processes important acoustic 
features of an incoming signal (Krizman & Kraus, 2019; Skoe & 
Kraus, 2010). 

• Recent studies have focused on the applicability of various 
Machine Learning (ML) models in FFR research (Hart & Jeng, 2021; 
Llanos et al., 2019; Xie et al., 2019). Although the attempts to use 
ML models in identifying FFRs have produced fruitful results, none 
of them are designed to enhance the visibility of an FFR.

• The Non-Negative Matrix Factorization (NMF) algorithm is the 
foundation of a conventional ML model (Lee & Seung, 1999). 
Inspired by the potential of the NMF algorithm and driven by the 
desire to enhance the visibility of an FFR, Jeng and colleagues 
(2023) developed a Source-Separation Non-Negative Matrix 
Factorization (SSNMF) algorithm that built upon the capabilities of 
the conventional NMF algorithm. The SSNMF algorithm 
successfully increased FFR visibility and decreased noise 
disturbance by clustering energies that demonstrate a consistent 
pattern of spectral amplitudes. 

• Silent intervals have traditionally been thought of as soundless 
gaps between adjacent acoustic stimuli. With the advent of the 
newly developed SSNMF algorithm, it is still unclear whether these 
intervals will significantly affect FFR extractions.
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Participants
• 23 adults (19 females, 4 males; 22.8 ± 1.8 years old).

Stimulus
• An English vowel /i/ with a rising frequency contour (F0 ranging 

from 102 to 140 Hz) was utilized to elicit FFRs.
• The stimulus has a duration of 150 ms. 
• The silent interval between the offset of a stimulus and the 

onset of the next was fixed at 150 ms.
• 70 dB SPL to the right ear.

Recording
• 3 gold-plated surface recording electrodes.

 High forehead (non-inverting), right mastoid (inverting), 
and low forehead (ground).

• 8000 accepted sweeps for each recording.
Data Analysis

• 100, 250, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, and 
8000 sweeps were randomly selected from a pool of the 8000 
accepted sweeps.

• The averaged time waveform of each nSweep condition was 
converted to an amplitude spectrogram by using a narrow-band 
sliding-window technique.

• Amplitude spectrograms of the 11 nSweep conditions were 
concatenated as input signals in the SSNMF algorithm.

Algorithm Performance
• FFR Enhancements and Noise Residues were computed to 

estimate algorithm performance, while silent intervals were 
either included (i.e., the WithSI condition) or excluded (i.e., the 
WithoutSI condition) in the data analysis.
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Figure 1. Design of a SSNMF Algorithm. The SSNMF 
algorithm was based on two assumptions: (1) each EEG 
recording was a mixture of FFR and noise, and (2) an 
FFR was present with similar magnitudes in each 
recording sweep. 

Architecture Optimization

Figure 3. Application of the SSNMF algorithm on FFR recordings with Silent Intervals. Grand-averaged 
spectrograms of the input data (A), spectral-basis matrix (B), information-coding matrix (C), 
enhanced FFR (D), and extracted noise (E).

Algorithm Performance (WithSI)

Figure 4. Application of the SSNMF algorithm on FFR recordings 
without Silent Intervals. Grand-averaged spectrograms of the 
input data (A), spectral-basis matrix (B), information-coding 
matrix (C), enhanced FFR (D), and extracted noise (E).

Figure 2. Procedural Steps of 
an Iteration Cycle.

Figure 5. Algorithm Performance with Silent Intervals. Figure 6. Algorithm Performance without Silent Intervals. 

Figure 7. Effects of Silent Intervals on the SSNMF 
Algorithm Performance. Net effects of silent intervals in 
terms of ΔFFR Enhancement (A) and ΔNoise Residue (B). 

Net Effects (WithoutSI – WithSI)
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