
• These results provide a guideline for FFR detection in
electroencephalography signals and can serve as a baseline for
future studies involving similar neural network applications.

• The prediction accuracy of the ANN is significantly influenced by
both the number of inputs and hidden neurons, particularly when
the number of sweeps reaches 100 or more.

• For FFR detection, an optimal range of approximately 6-8 inputs
and 4-6 hidden neurons is needed to maximize prediction
accuracy. Beyond these ranges, adding more inputs or hidden
neurons contributes minimally to improving accuracy, causing the
model performance to plateau.

• The ANN achieves prediction accuracies of approximately 84%
with a balanced number of inputs and hidden neurons,
particularly when the signal-to-noise ratio is enhanced through a
sufficient number of sweeps.

Learning Objective
• Upon completion, participants will be able to describe how deep

learning models, specifically a three-layer ANN, can be used to
detect the presence of FFRs, expanding their knowledge of how
machine learning tools can enhance auditory signal analysis in
clinical and research settings.

Clinical Takeaways
• Implementing ANN for detecting FFRs can significantly enhance

the precision of auditory diagnostics, particularly in evaluating the
neural encoding of speech intonation.

• This highlights the potential for integrating machine learning tools
into routine audiological assessments, offering a more efficient
and innovative approach for analyzing complex auditory stimuli
and improving patient outcomes.
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• The frequency-following response (FFR) is a neurophysiological
measure that reflects the brain's ability to track the temporal and
spectral characteristics of acoustic stimuli (Krizman & Kraus, 2019).

• Machine learning, a subset of artificial intelligence, has shown
considerable promise in uncovering hidden response patterns
within datasets. Various machine learning models have been
explored to improve the efficiency of FFR detection (Jeng et al.,
2024; Llanos et al., 2022).

• While traditional machine learning approaches have shown
promising results, deep learning methods, such as neural networks,
have not yet been widely explored for FFR detection.

• An artificial neural network (ANN) consists of multiple layers of
interconnected neurons, mimicking the various levels of signal
processing and capturing response patterns at different levels of
abstraction (LeCun et al., 2015).

• The purpose of this study was threefold: first, to evaluate the
feasibility of using a three-layer ANN to detect the presence or
absence of an FFR elicited by the intonation of a speech stimulus;
second, to determine the optimal number of inputs and hidden
neurons for FFR detection; and third, to assess model performance
with an increasing number of recording sweeps.
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Participants
• 60 American adults (43 females, 17 males, 24.9 ± 4.2 years old)

Stimulus
• An English vowel /i/ with a rising frequency contour (F0 ranging

from 102 to 140 Hz) was utilized to elicit FFRs.
• 70 dB SPL to the right ear through an ER-3A insert earphone
• 150-ms stimulus duration + 150-ms silent interval

Recording
• 3 gold-plated surface recording electrodes

 High forehead (+), right mastoid (-), and low forehead (gnd)
• Participants resting or fast-asleep prior to recording
• 8000 accepted sweeps from each participant

Preprocessing
• 1, 10, 100, 200, 500, 1000, 2000, 5000, and 7000 sweeps were 

randomly selected from a pool of the 8000 accepted sweeps.
• This resulted in a total of 9 nSweep conditions to be analyzed.
• The averaged waveform corresponding to the 150-ms stimulus 

presentation was treated as the experimental condition 
(response present), while the averaged waveform corresponding 
to the 150-ms silent interval was treated as the control condition 
(no response). 

• Each averaged waveform was transformed into a narrow-band 
amplitude spectrogram (window size: 50 ms, step size: 0.5 ms, 
frequency resolution: 1 Hz), from which a vector of F0 estimates 
was derived.

• For each nSweep condition, a dataset containing 120 vectors of 
F0 estimates (60 participants x 2 conditions [experiment vs. 
control]) was used to train and test a three-layer ANN.
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Figure 1. Architecture of a fully connected, feedforward neural network.

Architecture Parameter Selection and Optimization

Figure 3. Test accuracies plotted as a function of the number of
hidden neurons, across different numbers of inputs and sweeps.

Figure 2. Test accuracies displayed as a heat map (A), two representative
examples (B & C), with increasing inputs (D), and with an increasing number
of hidden neurons (E) at 7,000 sweeps.

• The number of input and hidden neurons was systematically varied between 1
and 16. The connections between the input neurons and hidden neurons were
weighted; these weights were adjusted during training to optimize model
performance.

• The output layer contained a single neuron that provided the network’s final
prediction: response present or absent.

• The output of a single neuron could be expressed by using the formula:
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• The learning process in this neural network was driven by backpropagation, a
technique that disseminated the prediction error (i.e., loss) backward through the
network to update the weights of the connections.

• During training, the BCEWithLogitsLoss function from PyTorch was used, and the
AdamW optimizer was utilized with a learning rate of 0.001 (Jeng & Jeng, 2022).

• Parameter optimization was stopped when the test loss decreased to 0.01 or after
200 training iterations (Xu et al., 2007; Zhou et al., 2008).

• All vectors of F0 estimates were randomly partitioned into training (75%) and test
(25%) datasets.

Figure 4. Test accuracies illustrated with increasing numbers of sweeps,
across different numbers of inputs and hidden neurons.

Model Performance

Statistical Results
• A three-way ANOVA revealed a significant effect for each of the three main

factors: the number of inputs (F(15, 20736) = 23.424, p <0.001, 𝜂௣
ଶ = 0.017), the

number hidden neurons (F(15, 20736) = 123.432, p <0.001, 𝜂௣
ଶ = 0.082), and the

number of sweeps (F(8, 20736) = 9892.434, p <0.001, 𝜂௣
ଶ = 0.792).

• For the 7,000-sweep condition, a two-way ANOVA demonstrated a significant
effect of the number of inputs (F(15, 2304) = 9.349, p <0.001, 𝜂௣

ଶ = 0.057) and
the number of hidden neurons (F(15, 2304) = 55.815, p < 0.001, 𝜂௣

ଶ = 0.267),
but not for the interaction between these two factors (p = 1.000).


