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In this module we introduce and compare various types of deterministic and stochas-
tic mathematical models of disease transmission. We then illustrate how one can derive
predictions of these models in the form of mathematical theorems.

1 Introduction

When studying models of disease transmission, we would like to answer the following:

Question 1 (a) What outcomes does a model predict, on average, for a given choice of
parameters?

(b) How, exactly, do these predictions depend on the choice of the parameters?

(c) How much variability in the outcomes should we expect to see between different out-
breaks?

(d) How do these predictions scale if we increase the population size N?

In most of the modules at this website1 we are exploring simulated outbreaks of diseases.
These explorations rely on agent-based models of disease transmission that are embodied
in the computer program IONTW.

Simulations can lead to meaningful conjectures about the answers to Question 1. But
their outcomes are subject to random fluctuations that may distort the predictions. If one
runs large batches of them, one can derive estimates on the level of confidence that can be
assigned to the answers to parts (a) and (c) for a given choice of parameters. This is often
sufficient for practical purposes, but falls short of absolute confidence.

Deriving answers for part (b) of Question 1 from agent-based models is even more
problematic. One can run simulations only for a given choice of parameters, or a sample
of such choices. But parameter settings that are left unexplored might give very different
outcomes. Part (d) of Question 1 is the most difficult one to explore with agent-based
models. It may be feasible to run simulations for populations of perhaps a few hundred or
a few thousand hosts, but the sizes of real populations of interest may be in the millions.
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No finite number of simulations will give us certainty, will let us explore all possible
choices of parameters, or allow us to explore the actual limit N → ∞. If we aim at cer-
tainty and complete characterization of the behavior under all possible parameter settings,
including the population size N , we need to work with mathematical models. The latter
are abstract mathematical constructs that can be studied theoretically, using mathematical
tools rather than computer simulations.

One type of mathematical models is already described in our module Differential equa-
tion models of disease transmission at this website.2 There we also derived some predictions
of ODE models that give rigorous answers to parts (a) and (b) of Question 1 under suitable
assumptions. But ODE models are not suitable for addressing parts (c) and (d) as they are
deterministic and based on the implicit assumption of a “practically infinite” population
size.

The remainder of this module is organized as follows: In Section 2 we will briefly revisit
ODE models and introduce difference equations, a related type of deterministic models
where time is assumed to progress in discrete steps. In Section 3 we will then present an
entirely different type of models called stochastic processes. Some of these processes embody
the exact same models as IONTW, but in the form of mathematical constructs instead of
computer code.

By analyzing these mathematical constructs, it is sometimes possible to derive rigorous
answers to all parts of Question 1 in the form of mathematical theorems. We will give
examples of such derivations in Section 4, where we will revisit theorems that were stated
somewhat informally in Section 9.2 of [4].

This module can only aspire to give you a flavor of the study of mathematical models
of disease transmission. Section 5 contains a brief discussion of how to use various types of
models together with pointers to the literature for more in-depth study.

2 Deterministic models

Any mathematical model of disease transmission has three ingredients: the variables of the
model, a notion of time, and a rule that tells us how the variables change over time.

When time can take only integer values, we talk about a discrete model; when time can
take all real values or all real values in [0,∞), we talk about a continuous-time model or
continuous model. The vector of values of the variables at any given time t is the state of
the model at time t. The state at time t = 0 is commonly called the initial state. If the rule
of change uniquely determines the state at any future time t ≥ 0 for any given initial state,
we talk about a deterministic model; if the rule only provides probability distributions, we
talk about a stochastic model or stochastic process.

The purpose of models of disease transmission is to predict what will, or is likely to,
happen in a given population of hosts. The models that we are considering here ignore
demographics, that is, births, immigration, emigration, and deaths from causes that are
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unrelated to the disease. If each individual host is represented by one or more separate
variables, we will talk here about host-level models. In the literature, the phrase individual-
based models is often used instead. Note that the models that are embodied in IONTW are
examples of host-level models; albeit not mathematical ones. When instead all variables
represent some characteristics of the entire population, such as overall prevalence of the
disease at time t, then we speak of compartment-level models. The phrase compartment-
based models is more common in the literature, but slightly misleading, as all known models
of disease transmission are based on the notion of compartments.

2.1 Very brief review of ODE models

ODE models of disease transmission are continuous-time compartment-level models. Here
we will restrict our attention to models of type SIR. ODE models of this type have
variables S, I, and R, which can be interpreted as actual numbers, expected numbers, or
(actual or expected) proportions of hosts in the S-, I-, R- compartments. These variables
will change over time, and S(t), I(t), R(t) will denote their values at a given time t.

The rule of change is given by a system of ordinary differential equations. In the SIR-
model that will be discussed here they take the form

dS

dt
= −βIS,

dI

dt
= βIS − αI,

dR

dt
= αI,

(1)

where the parameters α, β are positive constants.
Along any given solution curve, the equation S(t)+ I(t)+R(t) = N holds at all times t,

where N represents the constant size of the host population.
The use of derivatives makes sense only if N expresses the actual population size in

large batches, such as thousands or millions. We can then think of (1) as approximating
the behavior of agent-based SIR-models with the uniform mixing assumption for practically
infinite populations. Under suitable scaling, the parameters α and β of (1) correspond to
the parameters end-infection-rate and infection-rate of the corresponding continuous-
time models that are embodied in IONTW. You may think of the predictions of the ODE
model as giving half an answer to part (d) of Question 1 in that they can be interpreted as
predicting what happens if N →∞. They do not, however, shed light on the question how
so-called finite-size effects might distort these predictions when N is rather small.

The basic reproductive ratio R0 in the model (1) is

R0 =
βN

α
. (2)

Let s(t) = S(t)
N and s(∞) = limt→∞ s(t). Note that if R(0) = 0, then 1−s(∞) represents
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the final size of the outbreak. The model predicts that

s(∞) = s(0)eR0(s(∞)−1). (3)

Now consider an initial state with one index case in an otherwise susceptible population.
As ODE models implicitly assume a practically infinite (actual) population size, we would
have s(0) ≈ 1, and (3) can be approximated by the equation

s(∞) = eR0(s(∞)−1). (4)

When R0 > 1, (4) has exactly one solution in the interval (0, 1); when R0 ≤ 1, then
s(∞) = 1 is the only solution.

Thus the model (1) predicts that when R0 ≤ 1, every outbreak with such an initial
state will be minor, and when R0 > 1, every outbreak with such an initial state will be
major, with final size that can be deduced from (4). The latter prediction is unrealistic,
since introduction of one index case into an otherwise susceptible population will not always
result in a major outbreak; only with a nonzero probability. The model gives a fairly good
estimate of the expected final size for a large population if a major outbreak does occur.
But since it is deterministic, it cannot tell us how likely a major outbreak will be, or give
any other information about the expected amount of variability between outbreaks. ODE
models cannot address part (c) of Question 1.

More information about ODE models, and in particular, derivations of (2) and (3) can
be found in our module Differential equation models of disease transmission at this website.3

2.2 Models based on difference equations

While ODE models have the advantage that for their study we can rely on well-developed
mathematical theory, they have several features that make them a bit difficult to interpret
and match to data. One is that the variables S, I,R in such models represent (suitably
scaled) integer values, so that their derivatives cannot be treated too literally. Another
issue is that time t in these models can take on arbitrary real values, but data on the values
of these variables, most notably the disease prevalence I, are usually reported only once
for each fixed time interval, such as a day or a week. Both of these problems are absent in
models based on difference equations. We will introduce these in the context of SIR-models.

In difference equation models, time t can take any nonnegative integer values. As in an
ODE model, the variables S, I,R represent actual or expected numbers or proportions of
susceptible, infectious, and removed hosts. We will assume here that they represent counts
of hosts rather than proportions. As the variables can take values that are not integers,
in this view of the models they should be interpreted as estimates. The values of these
variables at time t are usually denoted by St, It, Rt, respectively. The state of the system
at time t is represented by the vector (St, It, Rt). The change of these variables over time
is determined by a so-called updating function F so that
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F (St, It, Rt) = (St+1, It+1, Rt+1) (5)

gives the state at the next time step.
Let FS , FI , FR denote the components of the vector function F . In this notation, (5)

can be written as a system

St+1 = FS(St, It, Rt),

It+1 = FI(St, It, Rt),

Rt+1 = FR(St, It, Rt).

(6)

Now suppose we are given an initial state (S0, I0, R0). Then (5) does not immedi-
ately give us explicit formulas for (St, It, Rt) at all times t > 0. But it allows us to
calculate (S1, I1, R1). We can substitute the result in the left-hand side of (5) and cal-
culate (S2, I2, R2). And so on. Thus (5) provides an iterative or recursive procedure for
calculating (St, It, Rt) at all times t > 0 when the initial state (S0, I0, R0) is given. Similar
to ODEs, difference equations give us deterministic models.

The description that we have given up to this point applies to all difference-equation
models with three variables S, I,R. What particular form should the components of the
updating function take in an SIR-model of disease transmission? Let us assume that the
actual time interval that is represented by one time step is sufficiently short so that no host
can become infectious and then move to the R-compartment during the same time step.
In other words, let us assume that no host can be susceptible at time t and then already
be removed at time t + 1. By the assumptions of SIR-models without demographics, at
time t+ 1 the R-compartment will contain all hosts who already were in this compartment
at time t, plus a certain fraction of hosts who resided in the R-compartment at time t.
The updated value It+1 must be computed by subtracting this fraction from It and adding
the number of newly infected hosts. The latter number will depend on St and It. It must
be subtracted from St. Therefore the difference equations for an SIR-model will be of the
form

St+1 = St −B(St, It),

It+1 = It +B(St, It)−AIt,
Rt+1 = Rt +AIt,

(7)

where A is a positive constant and B is a function of two variables.
Note that (7) implies that for all times t

St + It +Rt = St+1 + It+1 +Rt+1 = N, (8)

where N is the size of he population. This is exactly as it should be, since in our construction
of the model we have ignored demographics, that is, births, migration, and deaths from
unrelated sources, so that the population size remains constant.
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Exercise 1 (a) What form would an SIS-model based on difference equations take?
Ignore demographics. in this part of the exercise.

(b) What form would a SI-model based on difference equations take if we

- ignore migration,

- assume constant per capita birth and death rates that are not influenced by the infec-
tion, and

- assume that mother-to-infant transmission does not occur so that all hosts are born
susceptible?

(c) What does the model you constructed in part (b) predict about the total population size Nt

at time t?

Let us return to the SIR-model (7). The notation A and B is reminiscent of the
notation a and b for the probabilities of removal after one time step and effective contact
during one time step that were used in [4, 5] when we discussed mathematical aspects of
discrete-time agent-based models. In IONTW they are called end-infection-prob and
infection-prob, respectively. Is A = a and B(St, It) = b St It? If not, how are A and B
related to a and b? We will return to this question in Subsection 3.2.

For now, let us divulge that there is indeed a connection: Both the assumption of ho-
mogeneity of hosts and of uniform mixing are implicit in the construction of models based
on difference equations. The assumption of homogeneity of hosts is made in all models that
are embodied in IONTW, and the uniform mixing assumption can be enforced by choosing
the complete graph as the underlying contact network. IONTW actually computes the
values of St, It, Rt at each step of the simulation of a discrete-time SIR-model and even
graphically displays them to the screen. However, in the simulations done by IONTW,
the current state (St, It, Rt) does not uniquely determine the next state (St+1, It+1, Rt+1).
The software incorporates the stochasticity that is inherent in transmission of actual dis-
eases, while difference equation models are deterministic and do not. But one can interpret
F (St, It, Rt) as the vector of expected values of the variables at the next time step, given
the current state. This will allow us in Subsection 3.2 to derive expressions for A and B
that correspond to the probabilities a and b.

3 Stochastic process models

The deterministic models of the previous section can be studied with mathematical tools,
but they do not account for the stochasticity that is inherent of disease transmission. Agent-
based models do account for the randomness, but their predictions can only be studied by
running simulations. Stochastic processes models give us the best of both worlds in that
they incorporate randomness and are mathematical models that allow for the derivation of
their predictions in the form of theorems. You can think of a stochastic process model as an
agent-based model that is defined in terms of a mathematical construct, called a stochastic
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process, instead of embodied in computer code. The actual simulations obtained by running
the corresponding computer code give so-called realizations of the stochastic process. While
in practice one can run only a finite number of simulations, in the mathematical framework
of stochastic processes one can derive of statistical properties of the entire ensemble of
possible realizations.

At the most general level, a stochastic process is a vector of random variables (r.v.s) that
change over time. The state of the process at time t is a vector ~x(t) = (x1(t), . . . , xN (t)),
where xi(t) is the state of random variable xi at time t. Stochastic processes differ from
mere collections of random variables in that they allow for modeling of situations where
the distributions of the random variables xi(t

+) at time t+ may depend in interesting ways
on the states ~x(t) of the process at times t < t+. Time t can be be conceptualized as a
nonnegative integer or a nonnegative real number, exactly as in agent-based models. Recall
that our NetLogo program IONTW has two options for model-time. Depending on
which one is chosen, the code will generate realizations of discrete-time or continuous-time
stochastic processes.

For our purposes, the r.v.s xi(t) may either represent the states of individual hosts at
time t or the counts of hosts in each compartment at time t. In the former case, the stochastic
process formalizes a host-level model; in the latter case it formalizes a compartment-level
model. Let us look at each of these two possibilities in turn.

3.1 Host-level stochastic process models

Here we will describe stochastic processes that are the exact mathematical counterparts of
the agent-based models that are embodied in IONTW.

Consider a population of N hosts. Instead of representing host number i as an agent in a
computer program, we model it by a r.v. xi whose value at time t indicates the state of this
host at time t. The set of possible values of each xi(t) depends on whether we are building
an SEIR, SIR, SI, or SIS model; in each case it will be a subset of the set {S,E, I,R}.
Thus if host i is susceptible at time t, we will have xi(t) = S, if host i is infectious at time t,
we will have xi(t) = I, and so on.

While r.v.s formally are functions that take real numbers as values, it is more intuitive to
use symbols here instead of arbitrarily coding states by reals. Moreover, we will somewhat
informally refer to ordered N -tuples of the relevant symbols as “vectors.” For example,
the vector (IISR) would represent the state in a model with N = 4 where hosts 1 and 2
are infectious, host 3 is susceptible, and host 4 is removed. The set of all vectors that are
possible values of ~x(t) will be denoted by Ω and called the state space of the process.

Note that Ω is the same symbol that is normally used for a sample space.4 In general,
you can think of a stochastic process as repeatedly drawing elementary outcomes from a
same sample space, one at every time t, where the successive draws are not independent,
but strongly influenced by previous outcomes.

4See Section 1 of A brief review of basic probability theory at this website http://www.ohio.edu/people/

just/IONTW/
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Exercise 2 Determine the size |Ω| of the state space, that is, the number of possible states.
Assume a population of size N = 10 and

(a) an SEIR-model,

(b) an SIR-model,

(c) an SI-model,

(d) an SIS-model.

Now let us assume that we are formalizing a discrete-time SIR-model as a host-level
stochastic process. To keep things transparent, consider N = 3 hosts and assume uniform
mixing. Let a and b be the parameters of the model that correspond to infection-prob
and end-infection-prob in IONTW. Recall that they represent the probabilities of removal
and effective contact over a unit time interval respectively. Consider an initial state ~x(0) =
(x1(0), x2(0), x3(0)) = (ISS). What can we say about ~x(1)?

We cannot say for sure what ~x(1) will be. The construction of our agent-based models
implies that ~x(1) could be any of the states

(ISS), (IIS), (ISI), (III), (RSS), (RIS), (RSI), (RII). (9)

Each of these possibilities will occur with a certain probability strictly between 0 and 1.
This is exactly what “stochastic process” means: The future is not rigidly determined, but
the observations that we have made so far (at time 0 in our case) influence the probability
distribution at future times. Most notably, a lot of states in Ω, such as (SIR) and (IRS),
are missing from the list (9) and will have probability 0 at time t = 1. Our knowledge
of ~x(0) gives us partial information about ~x(1), but not certainty. This is, in a nutshell,
the difference between stochastic process models and the deterministic ODE and difference
equation models of Subsections 2.1 and 2.2.

While we don’t have the certainty offered by deterministic models, it is possible to
calculate the probability distribution of ~x(1) by calculating the probability of each of the
states in the list (9).5 Consider, for example, state (RIS). In order for the process to reach
this state after one time step, host 1 must become removed, host 2 must become infectious
(due to an effective contact with host 1, who is the only infectious host in the given initial
state), and host 3 must not have had an effective contact with host 1 by time t = 1. Since
our agent-based models implicitly assume independence of these three events, we get:

P (~x(1) = (RIS)) = P (x1(1) = R)P (x2(1) = I)P (x3(1) = S) = ab(1− b). (10)

The probability distribution at time t = 1 can be determined by performing similar
calculations for each state on the list (9). This is rather tedious, and we will not pursue
it here. Instead, let us consider an initial state for which the calculation of the entire
probability distribution at time t = 1 becomes more manageable.

5We are stretching the definition of probability distribution that is given in A brief review of basic
probability theory at this website http://www.ohio.edu/people/just/IONTW/ a bit. There it was only
discussed in the context of one r.v.; here we are using its generalization to symbolic vectors of r.v.s. This
generalization is completely straightforward and fairly intuitive, so we will leave it at the informal level.
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Exercise 3 Assume ~x(0) = (SIR). Find the probability distribution of ~x(1).

Exercise 4 Assume that ~x(3) = (IIS). Calculate P (~x(4) = (RII)).

A little twist in Exercise 4 is caused by the two infectious hosts in ~x(3). But there is
something much more remarkable about the exercise: We didn’t tell you anything about
the states ~x(0), ~x(1), ~x(2), and you did not need this information you solved the problem.
Why not?

As we described in our book chapter [5], the code that simulates outbreaks in IONTW
suffers from amnesia. It will determine the next state of the simulation exclusively based
on the current state. Mathematicians call this kind of amnesia the Markov property of a
stochastic process. For discrete-time processes that are called stationary Markov chains,
the probability distribution of the next state ~x(t+1) depends only on the current state ~x(t),
but neither on the states ~x(0), . . . , ~x(t − 1) that the process went through before reaching
state ~x(t) (this is the Markov property), nor on t itself (this is what “stationary” means).

The author of this module might have chosen a different version of Exercise 4, such as:
Assume that ~x(0) = (IIS). Calculate P (~x(1) = (RII)).

Or: Assume that ~x(t) = (IIS). Calculate P (~x(t+ 1) = (RII)).
Or: Find P (~x(7) = (RII) | ~x(6) = (IIS)).
Or: Find P (~x(t+ 1) = (RII) | ~x(t) = (IIS)).

The required calculations and and correct answer would have remained exactly the same.
The Markov property may not always be biologically realistic, but it greatly simplifies

calculations and modeling. To see how these calculations work, consider the initial state
~x(0) = (x1(0), x2(0), x3(0)) = (SIR) of Exercise 3. How can we calculate the probability
P (~x(2) = (IIR))? According to the Markov property this probability depends only on ~x(1),
but we don’t know with certainty what the state ~x(1) will be. We know, however, that it
must be one of the states on the list {(SIR), (SRR), (IIR), (IRR)} of our sample solution.
Neither of the states (SRR), (IRR) can be followed by state (IIR) one time step later. Thus
we know that ~x(1) ∈ {(SIR), (IIR)}. Now we can use the formula for the total probability
and the Markov property to calculate P = P (~x(2) = (IIR) | ~x(0) = (SIR)) as follows:

P = P (~x(1) = (SIR) & ~x(2) = (IIR)) + P (~x(1) = (IIR) & ~x(2) = (IIR))

= P (~x(1) = (SIR) | ~x(0) = (SIR))P (~x(2) = (IIR) | ~x(1) = (SIR)))

+ P (~x(1) = (IIR) | ~x(0) = (SIR))P (~x(2) = (IIR) | ~x(1) = (IIR)))

= (1− b)(1− a)b(1− a) + b(1− a)(1− b)2.

(11)

The principle behind these calculations stays the same when we are looking for P (~x(t) =
~y | ~x(0) = ~z) for any given ~y, ~z ∈ Ω and t > 0: The Markov property and the formula for
the total probability allows, at least in principle, to successively compute the probabilities
P (~x(t−) = ~y | ~x(0) = ~z) for t− = 1, 2, . . . , t−1, t and all ~y ∈ Ω. Performing such calculations
by hand could be extremely tedious, but for moderately large examples a computer will
happily perform them, using powers of the so-called matrix of transition probabilities. You
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can see that the initial state ~x(0) uniquely determines the probability distribution of ~x(t) for
all t ≥ 0, albeit not usually the actual value ~x(t) with certainty.

In the example that we have considered so far we have assumed uniform mixing. This
assumption simplified the description of the model, but the translation of our agent-based
models into host-level stochastic processes remains essentially the same if we assume that
effective contacts can only occur between two hosts i, j that are connected by an edge {i, j}
of a given contact network G. Only the calculations of the actual probabilities will be
different.

Let us illustrate these similarities and differences with the following example of a
discrete-time SIR-model. We assume that the population consists of N hosts, where N will
be left unspecified. Furthermore, we assume that a = 1, so that we have a next-generation
model, and 0 < b < 1. The edges of the contact network G will be all pairs of the form
{i, i+ 1} for i = 1, 2, . . . , N − 1. When N is a prime number like 17, you can easily set up
such models in IONTW by choosing, for example,

model-time → Discrete
infection-prob: 0.7
end-infection-prob: 1
gain-immunity: On
latent-period: Off
network-type → Nearest-neighbor 2
num-nodes: 17
d: 1

In the visualization of G the hosts appear as evenly spaced dots on a line segment.
When you run simulations with initial states that have exactly one infectious host in an
otherwise susceptible population, at the end you will always see a set of consecutive host
that have experienced infection.

Now consider an initial state ~x(0) = (· · ·SSISS · · · ) where host i is infectious and all
other hosts are susceptible. We want to find the probability distributions of ~x(1) and ~x(2)
for this given initial state. The construction of our agent-based models implies that ~x(1)
could be any of the states

(· · ·SSRSS · · · ), (· · ·SIRSS · · · ), (· · ·SSRIS · · · ), (· · ·SIRIS · · · ). (12)

The probabilities of reaching one of these states after one time step are

P (~x(1) = (· · ·SSRSS · · · )) = (1− b)2, P (~x(2) = (· · ·SIRIS · · · )) = b2,
P (~x(1) = (· · ·SIRSS · · · )) = b(1− b), P (~x(2) = (· · ·SSRIS · · · )) = (1− b)b. (13)

For all other states ~y ∈ Ω we have P (~x(1) = ~y) = 0.

Exercise 5 (a) Find the probability distribution of ~x(1) in this model given that the initial
state is ~x(0) = (ISS · · · ).
(b) Find the basic reproductive ratio R0 for this model.

How does this value behave if N →∞?
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Now let us revisit the initial state ~x(0) = (· · ·SSISS · · · ) where host i with 3 ≤ i ≤ N−2
is infectious and all other hosts are susceptible. We want to find the probability distribution
of ~x(2) for this given initial state. The construction of our agent-based models implies that
~x(2) could be any of the states

(· · ·SSRSS · · · ), (· · ·SRRSS · · · ), (· · ·SSRRS · · · ), (· · ·SRRRS · · · ),
(· · · IRRSS · · · ), (· · ·SSRRI · · · ), (· · · IRRRS · · · ), (· · ·SRRRI · · · ), (· · · IRRRI · · · ).

(14)

There are as many as 9 possibilities, but due to the particularly simple structure of the
model we have the rare luxury of being able to determine with certainty state ~x(1) based
on the observation of state ~x(2) and the assumption about ~x(0). For ~x(2) listed in the order
of (14), the preceding states ~x(1) must have been:

(· · ·SSRSS · · · ), (· · ·SIRSS · · · ), (· · ·SSRIS · · · ), (· · ·SIRIS · · · ),
(· · ·SIRSS · · · ), (· · ·SSRIS · · · ), (· · ·SIRIS · · · ), (· · ·SIRIS · · · ), (· · ·SIRIS · · · ).

(15)

Thus the probabilities of reaching the states in (14) after two steps are

P (~x(2) = (· · ·SSRSS · · · )) = (1− b)2, P (~x(2) = (· · ·SRRSS · · · )) = b(b− 1)2,
P (~x(2) = (· · ·SSRRS · · · )) = b(1− b)2, P (~x(2) = (· · ·SRRRS · · · )) = b(1− b)2,
P (~x(2) = (· · · IRRRS · · · )) = b3(1− b), P (~x(2) = (· · ·SRRRI · · · )) = b3(1− b),
P (~x(2) = (· · · IRRRI · · · )) = b4.

For all other states ~y ∈ Ω we have P (~x(2) = ~y) = 0.

Exercise 6 (a) Find the probability distribution of ~x(2) in this model given that the initial
state is ~x(0) = (ISS · · · ).
(b) Generalize the result of part (a) by finding the distribution of ~x(t) for arbitrary 0 < t < N
for the given initial state.

(c) Assume ~x(0) = (· · ·SSISS · · · ) is an initial state where host i is infectious and all other
hosts are susceptible. Find the probability distribution of ~x(t) for 0 < t < min{i,N − i+ 1}.
(d) Generalize the results of points (b) and (c) to arbitrary times t ≥ 0.

Hint: For parts (b)–(d), first invent a more convenient notation for all states that could
possibly be reached from the given initial state.

So far, we have assumed that time is discrete. Continuous-time host-level stochastic
processes are constructed similarly, with the difference that the relevant events (removal of
a given host i or an effective contact between hosts i and j for an SIR model) are assumed
to occur at random times. In the processes that formalize the continuous-time agent-based
models that are embodied in IONTW, the time until removal of a host i after onset of
infectiousness is an exponentially distributed r.v. with parameter α, which corresponds to
the parameter end-infection-rate of IONTW. The time until the next effective contact
between hosts i and j that are adjacent in the contact network is an exponentially distributed
r.v. with parameter β, which corresponds to the parameter infection-rate of IONTW.
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This description, together with the assumption that the r.v.s for the times until re-
moval and next effective contact for different (pairs of) hosts are independent, specifies a
continuous-time host-level stochastic process for any given choice of a contact network and
of the parameter values α and β. Casting this description in formal mathematical notation
allows for sophisticated derivations of theorems, but we will not need it here.

3.2 Compartment-level stochastic process models

Host-level stochastic processes have a number of useful properties: They directly formalize
the kind of agent-based models that we have been exploring with IONTW. In contrast to the
latter, they are mathematical constructs and allow, at least in principle, to derive rigorous
answers to all parts of Question 1. They are stationary Markov processes, which is usually
very helpful in such derivations. However, as you have seen in Exercise 2, these processes
tend to have huge state spaces Ω. Unfortunately, this feature may cause great difficulties
in mathematical arguments.

The deterministic models of Section 2 do not suffer from the latter defect: For SIR-
models of this type, each state can be represented as a three-dimensional vector. But
unfortunately, these models don’t account for stochastic effects. Can we have the best of
both worlds, stochastic process models with state spaces of manageable complexity and
simple mathematical structure? Yes we can. Up to a point.

Consider a host-level stochastic process model of type SIR, and let S(t), I(t), R(t) de-
note the numbers of hosts in the S-, I-, and R-compartments, respectively. The notation
is the same as in Subsection 2.1, but there these numbers were uniquely determined by
the initial state, whereas here they are r.v.s. In other words, for a given initial state
(S(0), I(0), R(0)) we will in general no longer know the vector (S(t), I(t), R(t)) for t > 0
with certainty; the model only implies a probability distribution of the latter vectors.
This probability distribution will usually depend on the initial state though. More gen-
erally, the distribution of (S(t), I(t), R(t)) will depend, in interesting ways, on the states
(S(t−), I(t−), R(t−)) at times t− < t. Thus we have defined another stochastic process.
It gives compartment-level summaries of the behavior of the underlying host-level process.
We will call it a compartment-level stochastic process. For discrete-time compartment-level
processes we will sometimes use the notation (St, It, Rt) for the states; similarly to the one
that we used in Subsection 2.2.

Do compartment-level stochastic process models give us the best of both worlds? Obvi-
ously, they account for the randomness inherent in disease transmission. For an SIR-model
with population of size N the state space Ω consists of all three-dimensional vectors (s, i, r)
of nonnegative integers with s + i + r = N . For moderately large N this will not be an
astronomically large number of states.

Exercise 7 Find the total number |Ω| of states for an SIR-model as above if N = 10.

OK, the probability distribution of (S(t), I(t), R(t)) will depend in interesting ways on
the states (S(t−), I(t−), R(t−)) at earlier times t− < t. But does it depend on them also in
mathematically nice ways?
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Not necessarily. Consider the example of the host-level process for the network-based
model that was discussed in the previous subsection. If the corresponding compartment-
level process were to have the Markov property, then, in particular, P ((St+1, It+1, Rt+1) =
(N −4, 2, 2)) should depend only on the state (St, It, Rt) and nothing else. But if you recall
our analysis of this model, then you will notice the following anomaly:

P ((S1, I1, R1) = (N − 4, 2, 2) | (S0, I0, R0) = (N − 2, 1, 1)) > 0,

P ((S2, I2, R2) = (N − 4, 2, 2) | (S1, I1, R1) = (N − 2, 1, 1)) = 0.
(16)

This follows from the fact that while for an initial state of this model the index case
could be flanked by two susceptible hosts who could both become infectious at time t = 1,
at later times an infectious host must have one removed neighbor and could infect at most
one other host. The compartment-level process fails to be a stationary Markov chain! The
probability of the next state may depend not only on the current state, but also on prior
history; in this case, on whether or not there was any prior history.

However, as the next proposition will show, if we assume homogeneity of hosts and
uniform mixing, then the compartment-level processes that summarize underlying host-
level processes will be stationary and have the Markov property. In this case they do
give us the best of both worlds: Mathematical models that incorporate stochasticity and
are relatively easy to study. They might enable us to quantify the expected amount of
variability between outbreaks and the distortions that occur for small N due to finite-size
effects.

Proposition 2 Consider a host-level stochastic process model of disease transmission that
is constructed under the assumptions of homogeneity of hosts and uniform mixing and is a
stationary Markov chain. Then the corresponding compartment-level process whose states
represent the counts of hosts in the compartments of the host-level process is also a stationary
Markov process.

This is a curious assertion. When you think about it for a moment, you will notice that
the information that we have provided so far in this module is not sufficient to rigorously
delineate the assumptions of Proposition 2. To be sure, the assumptions of homogeneity
of hosts and uniform mixing were extensively discussed in [4] and also reviewed in the
document Network-based models of transmission of infectious diseases: a brief overview at
this website.6 But host-level stochastic process model of disease transmission were only
illustrated in the previous subsection, not rigorously defined in full generality. The ones
we did illustrate were models of type SIR that are stationary Markov processes. But the
wording of the assumption suggests that the class of such models is much broader and might
include nonstationary processes and processes without the Markov property. It certainly
includes models of types SI, SIS, SEIR, and more. If this were a mathematical research
paper, we first would need to formally define the entire class before stating and proving the
proposition.

6http://www.ohio.edu/people/just/IONTW/
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At this semiformal introductory level though, the full mathematical rigor would only
obscure the main ideas. The beauty of Proposition 2 is that in order to prove it, you only
need to use the following properties of the two stochastic processes that it refers to:

• The model has finitely many compartments.

• The host-level process has r.v.s xi(t) that indicate the compartment that host i resides
in at time t.

• The compartment-level process has the same timeline as the host-level process. Its
state at each time t counts the number of hosts in each compartment at time t.

• A stochastic process is a stationary Markov process if, and only if, for any given state
~x(t) at time t, the distribution of ~x(t+) at any future time t+ > t depends only on
~x(t) and the time difference ∆t = t+ − t, and not on t itself or any values ~x(t−) for
t− < t.

Exercise 8 Outline a proof of Proposition 2.

Note that compartment-level processes make prediction about the same features of the
spread of an infection as the deterministic models of Section 2. Stochastic processes are more
accurate as they will predict also the amount of inherent variability. For small population
sizes, the predictions of of deterministic models may be far off the mark. However, for large
populations and cases where the assumptions of homogeneity of hosts and uniform mixing
are justified, deterministic models can give reasonably good approximations of the average
behavior of a corresponding compartment-level stochastic process model. This will work for
initial states that represent fairly substantial numbers of hosts in each compartment. And,
of course, the parameters in both types of models need to be chosen in such a way that
the two models do in fact approximate, each in its own way, the same underlying host-level
stochastic process.

This brings us back to the question of how A and B of the difference equation version (7)
of the SIR-model are related to the probabilities a and b of removal and effective contact
after one time step. If the model based on difference equations is supposed to approx-
imate average behavior of the compartment-level stochastic process, then the next state
(St+1, It+1, Rt+1) must represent the mean values of hosts in the three compartments at the
next step given that the current state is (St, It, Rt). From the second and third lines of (7)
it follows that the parameter A must represent the proportion of currently infectious hosts
that get removed after one time step. Recall that a is the probability of removal after one
time step for each individual host. This will also be the expected proportion of infectious
hosts that enter the R-compartment at time t+ 1. Thus we can conclude that A = a.

The relation between b and B is more subtle. Recall that b represents the probability
of an effective contact between any two given hosts i 6= j by the next time step. If host i
is infectious, then the exact same argument as in the previous paragraph shows that the
expected number of susceptible hosts j that have an effective contact with host i by the
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next time step is b St. Similarly, since there are It infectious hosts total, the expected total
number of pairs (j, i) of susceptible hosts j and infectious hosts i that will have an effective
contact by time t must be b St It. Before reading on, take a couple of minutes to think
about the following problem:

Exercise 9 Can we conclude that b St It also represents the expected number of new infec-
tions at the next time step, so that it will be equal to B(St It)? Why or why not?

Well, by definition, if host j is susceptible at time t and has an effective contact with
an infectious host, then j will be infectious at the next time step. If not, then j will remain
susceptible at time t + 1. But note that “with an infectious host” means “with at least
one infectious host.” When It > 1, some susceptible hosts may have effective contacts with
several infectious hosts, and only the first such contact of these will lead to moving one
host into the I-compartment. Thus, in general, the product b St It will be larger than the
expected number of new infections.

Let b+ denote the probability that a given susceptible host j has an effective contact
with at least one infectious host. By the assumptions of homogeneity of hosts and uniform
mixing, b+ will be the same for each susceptible host j, and the same argument as previously
shows that the expected number of new infections at time step t+ 1 will be b+ St.

How can we estimate b+? It will obviously depend on It, as host j could become
infectious due to an effective contact with any one of the hosts that are infectious at time t.
But the dependence will not be linear. It will be easier to determine the probability 1− b+
that host j has no effective contact with any of the hosts i that are infectious at time t.
For a given host i the probability that no effective contact between j and i occurs by the
next time step is 1− b, and for a fixed j and different hosts i these events are assumed to be
independent in the models that we discuss here. Project 8.1 of the online appendix of [5]
gives a detailed illustration of this assumption. The assumption of independence allows us
to multiply probabilities, so that

b+ = 1− (1− b)It (17)

For large population sizes, that is, for the kind of populations where a deterministic
model might give us good approximations, b is usually very small so that 1−b ≈ e−b and b+

can be approximated by:
b+ = 1− (1− b)It ≈ 1− e−b It . (18)

It follows that either of the following would be an appropriate choice for the function B
in (7):

B(St, It) = St
(
1− (1− b)It

)
, or

B(St, It) = St

(
1− e−b It

)
.

(19)

The second option is usually more convenient in calculations. When b It is very small,
then 1 − e−b It ≈ b It and the right-hand-side of (19) will be very close to b St It. This
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makes sense, as in this case the probability of effective contact with multiple infectious
hosts becomes negligible. In general,

B(St, It) < bSt It. (20)

When It comprises a significant fraction of the population, the difference between the
two sides of (20) may be substantial.

4 Theorems

Mathematical models of disease transmission may allow us to derive answers to all parts of
Question 1 in the form of mathematical theorems. Let us revisit here three theorems that
were stated in Section 2 of [4]. Equipped with the conceptual framework of the preceding
sections, we will be able to analyze their meaning in more depth than was possible in [4].
We will even be able to include some proofs.

Theorem 1 Assume homogeneity of hosts and uniform mixing in an SIR- or SIS-model.
Consider two times t, t+ with 0 ≤ t < t+. If R0 < 1 and 0 < I(t), then I(t+) < I(t).

There is something important missing in the statement of Theorem 1: What kind of
model are we talking about? In theorems that you will find in research papers or textbooks
this information is usually implied by the context and rarely stated explicitly. But in this
module the context does not help. “A model” could be based on ODEs, difference equations,
could be a compartment-level stochastic process, or built in yet another mathematical
framework.

For the ODE-based model (1) the proof of Theorem 1 is easy: If we factor out I in the
second line of (1), then we get

dI

dt
= I (βS − α) ≤ I (βN − α) = α I (R0 − 1). (21)

The last equality in (21) follows from the expression (2) for R0. Under the assumptions
of Theorem 1 the inequality is strict, and we conclude that the function I(t) is strictly
decreasing in this case. This is exactly what the theorem says.

Exercise 10 Prove Theorem 1 for the difference equation model (7) under the additional
assumptions that a = 1 and N is sufficiently large so that we can ignore the difference
between N and N −1. Hint: Use the version of the model where the function B is given by
the first line of (19). Start by deriving an expression for R0 and then use the results that
we presented at the end of the previous section. Keep in mind that the notation I(t) in the
statement of the theorem needs to be interpreted as It in the terminology of Subsection 2.2.
It is better to use S(t), I(t), R(t) instead of St, It, Rt in your solution of the exercise, so as
to avoid confusion whether R0 denotes the basic reproductive ratio or the number of removed
hosts at time 0.
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For stochastic process models Theorem 1 appears to be wrong: Due to random fluc-
tuations, the actual number of infectious hosts may increase, even when R0 is very small.
This point was already illustrated in [4]. But we need to keep in mind that the theorem
was quoted here verbatim from our book chapter [4]. In the book chapter, the variable I(t)
denotes the expected number of infectious hosts, while in this module the same notation is
used for actual numbers in compartment-level stochastic processes. When I(t) is interpreted
as a mean value, the theorem remains true for stochastic processes.

Unfortunately, the supply of letter symbols is very limited compared with the wealth of
different mathematical objects, and mathematicians will use the same symbol in different
meanings. Moreover, we mathematicians sometimes use different notations for essentially
the same notion; see the hint for Exercise 10. Whenever you want to rely on a result that
is quoted from a different source of mathematical writing, you need to carefully check what
the notation in that source actually stands for.

Now let us take a look at the second theorem of [4].

Theorem 2 Assume homogeneity of hosts and uniform mixing in an SEIR-, SIR- or
SIS-model. For any given probability p < 1 there exists a constant B(p) such that whenever
R0 ≤ 1, then with probability at least p the number of hosts who will experience infection
at some time during the outbreak will not exceed B(p), regardless of the population size N .
Thus if the population size is large, then with probability very close to 1, introduction of
a single index case into an otherwise susceptible population will result only in a minor
outbreak.

This theorem does not make sense in deterministic models. Period. Its very wording
implies that the models for which it is true are stochastic processes. Notice also that in order
to get any meaningful upper bound on the number of hosts that will experience infection,
one must assume an upper bound on the number of initially infectious hosts. The theorem
implicitly assumes that the use of the word “outbreak” in the first part is restricted to an
outbreak that is caused by a single index case. This information is implicit in the context
of [4], but not quite clearly stated in the theorem itself. If you want to use a theorem
that is quoted from another source, you always need to be on the alert for such additional
information that is given by the context. In an ideal world the wording of each theorem
would be entirely self-contained, but this cannot always be achieved in reasonably succinct
mathematical writing.

A complete formal proof of Theorem 2 in the framework of stochastic processes is beyond
the scope of this module. But at least when R0 < 1, the gist of the proof is fairly easy
to understand if we think about generations of infection (see online appendix of [5]): The
index case constitutes generation 0, and generation n + 1 will consist of all hosts that got
infected by a host in generation n. Under the assumptions of homogeneity of hosts and
uniform mixing, the mean number of hosts that any given host will infect prior to recovery
or removal is always ≤ R0. If there is exactly one index case, it follows that the mean
number of hosts in generation n is at most Rn0 . Let R(∞) be the total number of hosts that
experience infection during the outbreak. Since every host that experiences infection must
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belong to some generation, the mean of R(∞) satisfies

µ(R(∞)) =
∞∑
k=1

kP (R(∞) = k) ≤
∞∑
n=0

Rn0 . (22)

When R0 < 1, the right-hand side of (22) is finite. Now fix p < 1, and let B be such

that µ(R(∞))
B+1 < 1− p. Then

P (R(∞) > B) =

∞∑
k=B+1

P (R(∞) = k) ≤
∞∑
k=1

k

B + 1
P (R(∞) = k) =

µ(R(∞))

B + 1
< 1− p,

and Theorem 2 follows for the case R0 < 1.

Theorem 3 Assume homogeneity of hosts and uniform mixing in an SIR- or SEIR-model.
If R0 > 1, then there are numbers r(∞) and z∞ that satisfy the inequalities 0 < r(∞), z∞ <
1 such that as long as the population size is large, with probability very close to 1 − z∞,
introduction of a single index case into an otherwise susceptible population will result in a
major outbreak with final size close to r(∞).

The number r(∞) will be larger for larger values of R0 and the number z∞ will be smaller
for larger values of R0.

The number z∞ represents the probability of a minor outbreak for very large population
sizes. This probability is supposed to depend only on R0, but not (much) on the actual
population size N . Thus for very large population sizes N , major outbreaks should occur
with approximately the same probability 1−z∞. The number r(∞) represents the predicted
approximate final size of major outbreaks in large populations.

Theorem 3 is meaningful only for stochastic process models. It should be understood
that once we fix the type of the stochastic process, in particular, whether it is discrete or
continuous, the numbers z∞ and r(∞) will be determined by R0 alone. The theorem leaves
open the possibility that the actual values of r(∞) and z∞ may depend on the type of model
as well as on R0. We will show below how one can prove the theorem and derive formulas
for r(∞) and z∞ for one particularly simple type of stochastic process models.

Before we do so, let us show that the assumption of uniform mixing is very important
in this theorem. Assume that we have a class of stochastic process models for which the
expected number of hosts who will eventually experience infection in an outbreak that is
caused by a single index case has a finite upper bound that is valid for all population sizes.
Then the inequalities 1− z∞ > 0 and r(∞) > 0 cannot hold simultaneously. Now consider
the network-based models that were discussed at the end of Subsection 3.1. By the solution
to Exercise 5, for large population sizes we will have R0 ≈ 2b in these models, and for
b > 0.5 we get R0 > 1. Thus the next exercise implies that the conclusion of Theorem 3
fails for these models. This, of course, does not invalidate the theorem, as the uniform
mixing assumption is not satisfied in these network-based models.
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Exercise 11 Let b < 1 be fixed. Show that in the class of models described above the
expected value of the number of hosts that will experience infection in an outbreak that is
caused by introduction of a single index case into an otherwise susceptible population is
bounded from above by a fixed constant that does not depend on N . Hint: Use the results
from your solution of Exercise 6.

The standard formal proof of Theorem 3 relies on techniques that are beyond the scope
of our exposition. However, an argument that we already presented in our module Explor-
ing Erdős-Rényi random graphs with IONTW gives a proof for stochastic processes that
formalize next-generation models, that is, discrete-time agent-based models with a = 1. For
convenience, let us repeat the gist of this argument here.

Consider a next-generation compartment-based SIR-model with probability b of effec-
tive contact until the next time step. This can be interpreted as a network-based model
on a complete graph KN . Consider a pair (i, j) of distinct hosts. Suppose host i becomes
infectious at some time step t and host j will still be susceptible at time t. The probability
that these hosts will have an effective contact during the interval of infectiousness of host i,
that is, until step t+ 1 in terms of the model, must be equal to b. The same will be true if
host j becomes infectious at time step t and host i is still infectious at time t.

Now construct a random subgraph G of KN as follows: Consider a simulation of a model
as described in the previous paragraph that starts with one index case j∗ in an otherwise
susceptible population. One can think of the simulation as being performed by tossing
biased coins sequentially as the simulation progresses, for all edges that have one endpoint
that corresponds to a host who is infectious at the current time step, and whose other
endpoint represents a host who is still susceptible at the current time step. The coin will
need to be biased in such a way that it comes up heads with probability b. In terms of
the simulation, the hosts that will be infectious at the next time step are exactly the ones
represented by endpoints of those edges for which a coin is tossed and comes up heads.
Include these edges in E(G), and don’t include those edges for which the coin comes up
tails.

The “simulations” that are mentioned in the above description are of course realizations
of the host-level stochastic process that formalizes the agent-based model. In the construc-
tion given above, the decision about inclusion of a given potential edge {i, j} is based on
exactly one coin toss, the probability b of the coin coming up heads is fixed, and, most
importantly, the coin tosses are all independent. Thus the construction gives an instance
G = GER(N,λ) of an Erdős-Rényi random graph, where λ = b(N − 1) = R0.

Moreover, the set of hosts that will experience infection in this realization of the stochas-
tic process will be the connected component of the index case in G. For large N , with
probability z∞ ≈ 1 − %(λ) it will be a small component of negligible relative size, which
corresponds to a minor outbreak. And with probability 1− z∞ ≈ %(λ) it will be the giant
component, with relative size r(∞) ≈ %(λ). For λ > 1 we get %(λ) as the unique solution %
of the equation

1− % = e−λ% (23)

in the interval (0, 1).
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Exercise 12 Show that the predictions that are summarized in the preceding paragraph give
the same estimate of the final size as the ODE-based SIR model (1) predicts.

As we already remarked in the module on Erdős-Rényi random graphs, the same ar-
gument does not work for other types of models though. We can extract a construction
of a random graph from a given realization, but we lose independence in our decisions
about whether or not to include edges with a common endpoint i, because the probability
of an effective contact along these edges will depend on the time that node i stays infec-
tious, which is no longer fixed. As was illustrated with simulations in the online part of
book chapter [4], this will affect z∞. But, curiously enough, it will not alter r(∞). For
continuous-time stochastic processes this follows from Exercise 12, as for large population
sizes the ODE model (1) will give fairly good approximations of the expected final size
under the condition that a major outbreak did occur.

5 Review and further readings

This module has given you a bird’s-eye-view of the toolbox that is available in mathematical
epidemiology. It may have left you wondering: Which type of model would be the right one?

This question does not have one right answer. All models are just that: Models. Sim-
plified versions of the real world where infections spread. They differ in what they take
into account and what they ignore. And they differ in how difficult it is to derive actual
predictions from them.

Basically, the choice of model depends on what kind of questions you want to answer
and how detailed information about the spread of the infection in actual population is
available. Consider, for example, Theorem 3. It addresses all parts of Question 1: The
theorem (or rather its more specific versions like the one that we derived at the end of
the previous section) tells you what kind of outbreaks to expect and how their final sizes
depend on the parameter R0. It quantifies the variability between the two possible scenarios
in terms of the probability z∞, and it tells you what happens when the population size
increases without bound. Theorems of this kind can only be obtained in the framework of
stochastic processes. Unfortunately, studying stochastic processes is usually more difficult
than studying deterministic models like the ones of Section 2. Similarly to the constructions
of the latter models, Theorem 3 relies on the assumptions of homogeneity of hosts and
uniform mixing. Depending on the real populations of interest, these may or may not be
appropriate. Some analogues of Theorem 3 for certain types of network-based models can
be proved, but are technically much more challenging.

A simpler model may give you very different answers to your questions than a more
complex one that incorporates more realistic assumptions. In this is the case, the simpler
model cannot be trusted. If there is reasonable agreement between the predictions of the
simpler model and the more complex one, using the former is usually preferable.

As you saw in several places of this module, it is often enlightening to look at properties
of one type of model from the vantage point of a corresponding model that is constructed
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within a different mathematical framework. Successful research in mathematical epidemiol-
ogy requires the ability to look at a biological problem through multiple theoretical lenses,
that is, by studying and comparing multiple types of models. Achieving this versatility
requires in-depth study of modeling within each framework. There are a number of good
introductory texts on epidemic modeling. ODE-based modeling is covered in detail in the
survey article [3] and the textbook [6]. For an easy-to-follow and applications-oriented in-
troduction of several modeling frameworks, including models based on difference equations,
a good choice would be [7]. The textbook [1] gives the most comprehensive treatment,
at a more advanced mathematical level, and extensively covers stochastic process models.
It also contains many excellently structured exercises with hints and worked-out solutions.
Network-based models are covered to a limited extent in the textbooks that we listed above.
A more extensive and mathematically more advanced treatment of them can be found in [2].
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Sample solutions for the exercises

Sample Solution for Exercise 1: (a) Here we have only two variables, S and I. Under the
assumptions of homogeneity of hosts and uniform mixing, the components of the updating
function will take the form

St+1 = St −B(St, It) +AIt,

It+1 = It +B(St, It)−AIt,
(24)

where A is a positive constant and B is a function of two variables.

(b) As in models of type SIS, we have only two variables, S and I. At each step a number
of new hosts will enter the population. Due to the constant birth rate, this number will
be proportional to the overall population size, and due the absence of mother-to-infant
transmission, these new hosts will enter the S-compartment. Similarly, a certain fraction
of hosts will leave the population after each step, and since the death rate is assumed to
not depend on the infection, it will be the same proportion for both compartments. The
components of the updating function will take the form

St+1 = St −B(St, It) + C (St + It)−M St,

It+1 = It +B(St, It)−M It,
(25)

where C,M are positive constants. Here C represents fecundity and M represents mortality.

(c) By adding the equations in (25) we find that

Nt+1 = St+1 = C (St + It)−M St −M It = (C −M)Nt.

Unsurprisingly, if fecundity exceeds mortality, the model predicts (exponential) growth
of the population size; if mortality exceeds fecundity, the model predicts (exponential)
decrease of the population size; if C = M , the model predicts a constant population size.
�

Sample Solution for Exercise 2: (a) x1 can take any of the 4 values in the set {S,E, I,R}.
For any choice of x1, the variable x2 can again take any of these four values, and so on.
Thus |Ω| = 4N = 410 = 1, 048, 576.

Similar arguments apply to the other types of models. We get

(b) |Ω| = 3N = 310 = 59, 049,

(c) |Ω| = 2N = 210 = 1, 024,

(d) |Ω| = 2N = 210 = 1, 024. �

Sample Solution for Exercise 3: The construction of our agent-based models implies
that ~x(1) could be any of the states

(SIR), (SRR), (IIR), (IRR). (26)
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For all other states ~y ∈ Ω we have P (~x(1) = ~y) = 0.
Thus the state of host i = 3 will remain R at all times in the future, and we can ignore

this host in our calculations of probabilities.
Probabilities of the states in (26) can be calculated from the parameters a and b based

on how the states of hosts 1 and 2 do or don’t change. We find:

P (~x(1) = (SIR)) = (1− a)(1− b), P (~x(1) = (SRR)) = a(1− b),
P (~x(1) = (IIR)) = (1− a)b, P (~x(1) = (IRR)) = ab.

(27)

Note that these probabilities add up to 1, as they should. �

Sample Solution for Exercise 4: If xi(3) = S and x3(4) = I, then host 3 must have
had an effective contact with at least one of hosts 1 or 2 during the interval represented
by the fourth time step. Under the standing assumption of independence of contacts, the
probability of this event can be calculated as 1− (1−b)2 = 2b−b2, where (1−b)2 represents
the probability that host 3 had effective contact with neither host 1 nor host 3. We now
can calculate
P (~x(4) = (RII)) = P (x1(4) = R)P (x2(4) = I)P (x3(4) = I) = a(1− a)(2b− b2). �

Sample Solution for Exercise 5: (a) The construction of our agent-based models implies
that ~x(1) could be one of the states

(RSS · · · ), (RIS · · · ).

The probabilities of reaching theses states after one step are

P (~x(1) = (RSS · · · )) = (1− b) and P (~x(2) = (RIS · · · )) = b.

For all other states ~y ∈ Ω we have P (~x(1) = ~y) = 0.

(b) The calculations in point (a) apply to initial state (· · ·SSI) as well. In both of these
cases the mean number of secondary infections caused by the index case is b.

For initial states with exactly 1 infectious node i 6= {1, N} in an otherwise susceptible
population the calculations in the main text above the exercise apply, so that the mean
number of secondary infections caused by the index case is 2b2 + b(1− b) + (1− b)b = 2b.

The definition of R0 assumes that the index case is randomly chosen (according to the
uniform distribution) from the population. It follows that

R0 =
2

N
b+

N − 2

N
2b =

N − 1

N
2b.

In particular, limN→∞R0 = 2b. �

Sample Solution for Exercise 6: (a) The construction of our agent-based models implies
that ~x(2) could be any of the states

(RSS · · · ), (RRS · · · ), (RRI · · · ). (28)
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Due to the particularly simple structure of the model we can determine with certainty
state ~x(1) based on the observation of state ~x(2) and the assumption about ~x(0). For ~x(2)
listed in the order of (28), the preceding state ~x(1) must have been:

(RSS · · · ), (RIS · · · ), (RIS · · · ).

Thus the probabilities of reaching the three possible states after two steps are

P (~x(2) = (RSS · · · )) = (1− b),
P (~x(2) = (RRS · · · )) = b(1− b),
P (~x(2) = (RRI · · · )) = b2.

For all other states ~y ∈ Ω we have P (~x(2) = ~y) = 0.

(b) The states that can be reached after 0 < t < N steps all start with a string of 0 < k ≤ t
occurrences of the letter R, followed by either a string of consecutive Ss or a single I,
followed a string of consecutive Ss. Let (kS) denote the first type and let (kI) denote the
second type.

We see that in each feasible state there is at most one infectious host i, and this host
can transmit the disease only to the next host i+ 1.

A state (kS) can be reached only after k−1 secondary infections have been successively
caused by the single infectious host, no transmission from host k to host k + 1 occurred,
and k infectious hosts were successively moved into the R- compartment. Thus state (kS)
can never occur at time t < k, and will be observed at time t ≥ k with probability bk−1(1−b).

A state (kI) can be reached only after k secondary infections have been successively
caused by the single infectious host, and only at time t = k, when host k + 1 has not yet
moved from the I- to the R-compartment. Thus the probability of this state at time t = k
is bk; at all other times its probability is 0.

In summary, we get the following probability distribution at time 0 < t < N :

P (~x(t) = (kS)) = bk−1(1− b) for all 0 < k ≤ t,
P (~x(t) = (tI)) = bt,
P (~x(t) = ~y) = 0 for all other states ~y.

(29)

Note that these probabilities add up to 1, so that we do get a probability distribution.

(c) The states that can be reached after 0 < t < min{i,N − i + 1} steps all start with a
string of Ss, followed possibly by the letter I, followed by ` ≤ t occurrences of the letter R
immediately to the left of position i, followed by a string of r+1 ≤ t+1 lettersR that starts in
position i, and then followed possibly by I, and another string of consecutive Ss. Similarly
to what we did for point (b), let us code these states by (S`rS), (I`rS), (S`rI), (I`rI)
respectively. Note, however, that the coding is slightly different so that here `, r ≥ 0, while
k ≥ 1 in the coding of part (b).

As to the left and to the right of the index case the disease can spread only by way
of one secondary infection at each time step, similarly as in point (b) we can deduce that
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state (S`rS) can occur only when t > max{`, r}, states (I`rS), (S`rI) can occur only when
t = `+1 > r and t = r+1 > `, respectively, and state (I`rI) can occur only when t = ` = r.

Now observe that the spread of the infection to the left and right of the index case are
independent, and the situation is symmetric. The spread to the right of i is in essence the
spread in the subpopulation {i, i+ 1, . . . , N} with i being the index case. Therefore we can
reduce the problem to our solution of part (b) by treating the spread to the left and to the
right of i separately and multiplying probabilities. In these calculations we need to keep in
mind though that in the coding of part (b) we counted an R in the initial position so that
k ≥ 1, but here the R at position i is not counted so that `, r ≥ 0. We obtain the following
distribution at time t:

P (~x(t) = (S`rS)) = b`+r(1− b)2 when 0 ≤ max{`, r} < t,
P (~x(t) = (ItrS)) = bt+r+1(1− b) when 0 ≤ r ≤ t,
P (~x(t) = (S`tI)) = b`+t+1(1− b) when 0 ≤ ` ≤ t,
P (~x(t) = (IttI)) = b2t+2,
P (~x(t) = ~y) = 0 for all other states ~y.

(30)

The sum of these probabilities can be expressed as the square of the sum of the probabil-
ities in (29). Thus the probabilities in (30) also add up to 1, so that we do get a probability
distribution.

(d) The solution for this part can be obtained in a similar fashion as the solution to parts (b)
and (c). The only difference is that states whose string of Rs to the left of i has reached
position 1 or whose string of Rs to the right of i has reached position N need to be treated
separately. We leave the detailed calculations to the reader. �

Sample Solution for Exercise 7: The value s can be any integer from 0 to N . For a
given value of s, the value of i can be any integer from 0 to N − s, and for a given pair (s, i)
the value of r must be equal to 1− s− r. This gives

|Ω| =
N∑
s=0

(N − s+ 1) =
(N + 1)(N + 2)

2
.

For N = 10 we get |Ω| = 66, which is much smaller than the value 310 = 59, 049 that
we obtained for the underlying host-level process. �

Sample Solution for Exercise 8: Let ∆t > 0. Consider a state ~X(t) of the compartment-
level process. It specifies the numbers of hosts in each compartment of the model. Let us
call it a macrostate. There are usually many different compatible microstates ~x(t) of the
underlying host-level process that could be represented by the macrostate ~X. If the host-
level process is a stationary Markov process, then each of these compatible microstates
determines the probability distribution of microstates ~x(t+) at time t+ = t + ∆t in a
way that does not depend on t or prior history. This in turn determines the probability
distribution of the vectors ~X(t+) that will give us the counts of hosts in each compartment
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at time t+. At least in principle, the latter distribution can be computed by summing
up, for each possible macrostate ~Y and all microstates ~y that are compatible with ~Y , the
probabilities P (~x(t+) = ~y) for the given value of ~x(t).

That much is always true, but in general the probability distribution of ~X(t+) will
depend on the particular microstate ~x(t) of the underlying host-level process at time t.
However, when we assume homogeneity of hosts and uniform mixing, in terms of all relevant
properties, each host is an identical copy of each other host (see [4] for a detailed discussion).
We can change the labels that we assigned the hosts without altering the predictions of how
many hosts will become infections or be removed at any future time. In other words, the
predictions about macrostates ~X(t+), in particular, their probability distribution, will not
depend on which particular microstate ~x(t) actually represents the macrostate ~X(t). Thus
the probability distribution of ~X(t+) depends only on ~X(t) and ∆t under these assumptions.
�

Sample Solution for Exercise 10: As suggested in the hint, we will use the notation
S(t), I(t), R(t) instead of St, It, Rt. In this model, an initial state with one index case
in an otherwise susceptible population is represented by the vector (S(0), I(0), R(0)) =
(N − 1, 1, 0). In view of our assumption a = 1 and since a = A, the next state will be of
the form (S(1), I(1), R(1)) = (N − I(1) − 1, I(1), 1). As S(t), I(t), R(t) for t > 0 can be
interpreted as mean values for the given initial state and the index case is already removed
at time t = 1, we get from (7) and the first line of (19):

R0 = I(1) = B(S(0), I(0)) = B(N − 1, 1) = (N − 1)
(
1− (1− b)1

)
= b(N − 1). (31)

Thus when R0 < 1 is given and N is sufficiently large, then we will also have bN < 1.
Now notice that in order to prove the theorem for the model we are considering here it

suffices to show that for any state (S(t), I(t), R(t)) with I(t) > 0 we must have I(t + 1) <
I(t). Since A = 1, from (7), (20), and (31) we get for R0 ≈ bN < 1:

I(t+ 1) = B(S(t), I(t)) ≤ bS(t)I(t) ≤ bNI(t) < I(t). (32)

�

Sample Solution for Exercise 11: Let R(∞) denote the total number of hosts that
experience infection during a given outbreak. If the outbreak is caused by introduction of
a single index case into an otherwise susceptible population, we can use the same coding of
possible states as in the sample solution of Exercise 6(b). Now the strings of Rs may start
at node i = 1 and/or end at node i = N though, but we can put a (phantom) S on each
side. Under this convention, the outbreak must eventually reach a final state of the form
(S`rS). For such a final state, we will have R(∞) = `+ r + 1.

Regardless of whether or not the outbreak starts at or eventually reaches one of the
endpoints i = 1, N , for all t,N and fixed `, r ≥ 0 the following estimate holds:

P (~x(t) = (S`rS)) ≤ b`+r.
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Thus regardless of the population size N we get:

µ(R(∞)) ≤
∞∑
`=0

∞∑
r=0

(`+ r)b`+r =
∞∑
k=0

k(k + 1)bk <∞.

�

Sample Solution for Exercise 12: For the model that this exercise refers to we have
R0 = λ and r(∞) = %. Moreover, for an outbreak in an SIR-model we will always have
s(∞) = 1− r(∞). When we make these substitutions in (23), we obtain

1− r(∞) = e−R0r(∞),

s(∞) = eR0(s(∞)−1).

The second line is the same expression as (4). �
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