Conversation 25A: Introduction to Linear Dependence and Linear Independence, Part I

Winfried Just
Department of Mathematics, Ohio University

MATH 3200: Applied Linear Algebra

Question 43.6

Bob: It says here in Question 6 of Module 43:

"Let \vec{v}_1, \vec{v}_2 be any vectors in \mathbb{R}^3 . Is then the linear span $span(\vec{v}_1, \vec{v}_2)$ always a plane in \mathbb{R}^3 ?"

Did any of you find the answer?

Question C25.1: What was your answer?

Cindy: I think it must be "yes." When we take the span of 1 vector in \mathbb{R}^3 , we get a line, when we take the span of 2 vectors in \mathbb{R}^3 , we get a plane, when we take the span of 3 vectors in \mathbb{R}^3 , we get the whole space \mathbb{R}^3 . This is such a neat pattern:

When we take the span of k vectors, we get a space of dimension k.

Denny: Nice pattern! Yeah, but when we take the span of 4 vectors in \mathbb{R}^3 , we would get a 4-dimensional subspace.

How would that look?

A counterexample

Frank: Wouldn't look like anything. There are no 4-dimensional subspaces of the 3-dimensional Euclidean space \mathbb{R}^3 . Cindy's pattern must be wrong!

Alice: The pattern that Cindy noticed actually works most of the time, but not always.

Cindy: Does it always work for dimensions 1, 2, and 3?

Bob: I think Question 6 of Module 43 is asking precisely whether it does work for dimension 2.

Frank: And the answer is "no."

Bob: Why?

Frank: Consider $\vec{\mathbf{v}}_1 = [1, 0, 0]$ and $\vec{\mathbf{v}}_2 = [-2, 0, 0]$.

Question C25.2: What is $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$ in Frank's example?

What if $\vec{\mathbf{v}}_2$ is a scalar multiple of $\vec{\mathbf{v}}_1$?

Frank: When $\vec{\mathbf{v}}_1 = [1,0,0]$ and $\vec{\mathbf{v}}_2 = [-2,0,0]$, then $span(\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2)$ comprises all vectors on the x-axis, but nothing more. This set is a line, not a plane.

Denny: But $\vec{\mathbf{v}}_2 = -2[1,0,0] = -2\vec{\mathbf{v}}_1$. So, the vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ in your example are practically the same. Your example is cheating, man!

Frank: It is a fine example of two different vectors. What do you mean by "practically the same" anyway?

Alice: Good question, Frank!

Cindy: I think Denny means that when $\vec{\mathbf{v}}_2 = c\vec{\mathbf{v}}_1$ for some scalar c, then $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$ can only be a line. Is that right?

Bob: Let's see. If $\vec{\mathbf{w}}$ is in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$, then $\vec{\mathbf{w}}$ is a linear combination of $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2$ so that for some scalars d_1, d_2 :

$$\vec{\mathbf{w}} = d_1 \vec{\mathbf{v}}_1 + d_2 \vec{\mathbf{v}}_2 = d_1 \vec{\mathbf{v}}_1 + d_2 (c \vec{\mathbf{v}}_1) = (d_1 + c d_2) \vec{\mathbf{v}}_1.$$

So every vector $\vec{\mathbf{w}}$ in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$ is a scalar multiple of $\vec{\mathbf{v}}_1$, and all of these vectors $\vec{\mathbf{w}}$ lie on the same line.

How about the linear span of 3 vectors?

Cindy: I see. And when we take the span $span(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ of 3 vectors in \mathbb{R}^3 , and one of them is a scalar multiple of another, then we can get at most a plane, but not the entire space \mathbb{R}^3 , right?

Bob: Right! Essentially the same calculation shows this.

Denny: And when neither of these 3 vectors is a scalar multiple of another, we get the entire \mathbb{R}^3 !

Theo: You are jumping to conclusions here, Denny.

Denny: How is that?

Theo: Consider $\vec{\mathbf{v}}_1 = [1, 2, 3], \vec{\mathbf{v}}_2 = [-1, 1, -2], \vec{\mathbf{v}}_3 = [3, 0, 7].$

Neither of these vectors is a scalar multiple of the other two.

Denny: So $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3) = \mathbb{R}^3$; that's what I meant!

Theo: But that's not the case!

Bob: I don't see why.

What if one vector is a linear combination of the others?

Theo: Here $\vec{\mathbf{v}}_3 = [3,0,7] = [1,2,3] - 2[-1,1,-2] = \vec{\mathbf{v}}_1 - 2\vec{\mathbf{v}}_2$.

Bob: Oh, now I see! When $\vec{\mathbf{w}}$ is in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3)$, for the vectors in your example, then there are scalars d_1, d_2, d_3 such that

$$\vec{\mathbf{w}} = d_1 \vec{\mathbf{v}}_1 + d_2 \vec{\mathbf{v}}_2 + d_3 \vec{\mathbf{v}}_3 = d_1 \vec{\mathbf{v}}_1 + d_2 \vec{\mathbf{v}}_2 + d_3 (\vec{\mathbf{v}}_1 - 2\vec{\mathbf{v}}_2)$$

= $(d_1 + d_3)\vec{\mathbf{v}}_1 + (d_2 - 2d_3)\vec{\mathbf{v}}_2$.

So $\vec{\mathbf{w}}$ must already be in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$, which cannot be all of \mathbb{R}^3 , because it is the linear span of only 2 vectors!

Theo: And this observation generalizes: When we have 3 vectors in \mathbb{R}^3 , one of which is a linear combination of the others, then the linear span cannot be all of \mathbb{R}^3 . It must have dimension less than 3, like a plane or a line. I can show you the proof!

Bob: Thank you Theo, but maybe not now.

When does a linear span have dimension k?

Cindy: Would it then be true in general that the linear span $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, ..., \vec{\mathbf{v}}_k)$ of k vectors in some \mathbb{R}^n has dimension less than k if one of these vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, ..., \vec{\mathbf{v}}_k$ is a linear combination of the others, and has dimension k if none of these vectors is a linear combination of the others?

Alice: Yes, Cindy! What you have expressed here in your own words is a mathematical theorem.

Denny: Wow! But look at Cindy's sentence. It goes on and on. Is there a simpler way of saying this; one that I could memorize?

Frank: And what do you mean by "dimension," Cindy?

Cindy: I simply mean: Lines have dimension 1, planes have dimension 2, and \mathbb{R}^3 has dimension 3.

Frank: I know that. But what does "dimension 24" mean?

Theo: Good points, Denny and Frank! To address your concerns, we will need to introduce some new terminology.

Linear (in)dependence

Definition (Tentative)

Consider a set $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ of k > 1 vectors of the same order.

This set is *linearly dependent* if, and only if, one of these vectors can be expressed as a linear combination of the other vectors.

This set is *linearly independent* if, and only if, it is not linearly dependent.

Cindy: "Of the same order" here means that they are all row vectors or all column vectors, and are all of the same length, right?

Theo: Right.

Cindy: So, could I now put my observation like this?

"The linear span $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, ..., \vec{\mathbf{v}}_k)$ of k > 1 vectors in some \mathbb{R}^n has dimension less than k if these vectors are linearly dependent, and has dimension k if they are linearly independent."

Question C25.3: Did Cindy get this right?

Theo: Perfect!

Denny: And that's a much shorter sentence!

What did we learn from this conversation?

Question C25.4: How would you describe the take-home message from this part of the conversation?