Conversation 25C: A Geometric Interpretation of Linear (In)dependence

Winfried Just
Department of Mathematics, Ohio University

MATH 3200: Applied Linear Algebra

Review: Definitions of Linear (in)dependence

Definition (Tentative)

Consider a set $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ of vectors of the same order.

This set is *linearly dependent* if, and only if, one of these vectors can be expressed as a linear combination of the other vectors.

This set is *linearly independent* if, and only if, it is not linearly dependent.

Definition (Official)

Consider a set $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ of vectors of the same order.

This set is *linearly dependent* if, and only if, there are scalars c_1, c_2, \ldots, c_k , not all of them zero, so that

$$c_1\vec{\mathbf{v}}_1+c_2\vec{\mathbf{v}}_2+\cdots+c_k\vec{\mathbf{v}}_k=\vec{\mathbf{0}}.$$

This set is *linearly independent* if, and only if, it is not linearly dependent.

These two definitions are equivalent; they define the same concepts.

Review: Two observations

Recall the following fact from Module 46:

Proposition

Consider a set $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1}\}$ of vectors of the same order.

- (a) Every vector $\vec{\mathbf{w}}$ in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$ is also in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1})$.
- (b) If $\vec{\mathbf{v}}_{k+1}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$, then $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k) = span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1})$.

Also recall Cindy's observation from Conversation 25:

Proposition

The linear span $(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, ..., \vec{\mathbf{v}}_k)$ of k > 1 vectors in some \mathbb{R}^n has dimension less than k if these vectors are linearly dependent, and has dimension k if they are linearly independent.

How to think of "linear independence"?

Denny: How can I wrap my mind around this "linearly independent" thing? The definitions only say "when it's not linearly dependent." Is there some positive way of thinking about linear independence?

Alice: Yes, there is. Let $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ be a linearly independent set of vectors in some space \mathbb{R}^n . For starters, let's focus on the subset $\{\vec{\mathbf{v}}_1\}$ that consists only of the first of these vectors.

Question C25.10: Is the set $\{\vec{v}_1\}$ also linearly independent?

Denny: Yes, because any subset of a linearly independent set is linearly independent.

Question C25.11: Geometrically speaking, what would $span(\vec{\mathbf{v}}_1)$ then be?

Denny: By Cindy's observation, this set must be a 1-dimensional linear subspace of \mathbb{R}^n , a line through the origin.

Linear independence: The geometric intuition

Alice: Right! Now consider the subset $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2\}$ that consists only of the first two vectors. Then $\vec{\mathbf{v}}_1$ is in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$.

Question C25.12: Can $\vec{\mathbf{v}}_2$ also be in $span(\vec{\mathbf{v}}_1)$?

Denny: No. This is ruled out by our tentative definition, since $\vec{\mathbf{v}}_2$ cannot be a linear combination of any of the other vectors in the set $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_n\}$ if this set is linearly independent.

Alice: So, $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$ must be a larger set than $span(\vec{\mathbf{v}}_1)$.

Denny: I see. By Cindy's observation, it would be a 2-dimensional set, a plane through the origin!

Alice: Right! Analogously, $\vec{\mathbf{v}}_3$ is not in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$, so that $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3)$ must be still larger than the plane $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$; it must be of dimension 3.

Denny: And so on. Got it. Are you saying that in a linearly independent set, each vector adds a new dimension to the span?

Alice: Yes, this is how I think about it geometrically.

Take-home message

This discussion shows how we can think geometrically about *linear* independence.

Question C25.13: How would you describe, in your own words, the geometric interpretation of *linear dependence*?

We can think about linear dependence in this way: When the set $\{\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2,\ldots,\vec{\mathbf{v}}_k\}$ is linearly dependent, and we start from the zero-dimensional space $V=\{\vec{\mathbf{0}}\}$ and then successively form the sets $span(\vec{\mathbf{v}}_1), span(\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2), span(\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2,\ldots,\vec{\mathbf{v}}_k)$, then at some step the dimension does *not* increase.