Conversation 32: Complex Eigenvalues

Winfried Just Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Winfried Just, Ohio University MATH3200, Conversation 32: Complex Eigenvalues

What about complex eigenvalues?

Frank: What's the deal with those "complex eigenvalues"? They don't make sense.

Denny: Are you saying, Frank, that they cannot be for real?

Frank: That's a good one! I mean: In this part of the course we always assume that all the vectors $\vec{\mathbf{x}}$ are in some \mathbb{R}^n , that their coordinates are real numbers. When you multiply such an $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ with a complex number like $\lambda = 1 - 2i$, then you get a vector that is not even in \mathbb{R}^n , and therefore cannot be equal to $\mathbf{A}\vec{\mathbf{x}}$. So, how can a complex number like $\lambda = 1 - 2i$ be an eigenvalue?

Theo: Formally, the eigenvalues of a matrix **A** are defined as the roots of the characteristic polynomial det($\mathbf{A} - \lambda \mathbf{I}$). Even when **A** has only real elements, some of these roots may not be real numbers. In particular, Frank's $\lambda = 1 - 2i$ may still be an eigenvalue. But Frank is right, there will be no real eigenvectors with such eigenvalues.

Frank: Thats' exactly my point: These λ are meaningless.

Rotations of the plane

Theo: Not at all! Complex eigenvalues of **A** give us important information about the geometry of the linear transformation L_A .

Consider, for example, the matrix
$$\mathbf{R}_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

We have seen that the corresponding linear transformation $L_{\mathbf{R}_{\alpha}} : \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation of the plane by an angle α .

For this matrix we get
$$\mathbf{R}_{\alpha} - \lambda \mathbf{I} = \begin{bmatrix} \cos \alpha - \lambda & -\sin \alpha \\ \sin \alpha & \cos \alpha - \lambda \end{bmatrix}$$
 and

 $det(\mathbf{R}_{\alpha} - \lambda \mathbf{I}) = (\cos \alpha - \lambda)^{2} + (\sin \alpha)^{2}, \text{ which we can expand to}$ $det(\mathbf{R}_{\alpha} - \lambda \mathbf{I}) = \lambda^{2} - 2\lambda \cos \alpha + \cos^{2} \alpha + \sin^{2} \alpha, \text{ which simplifies to}$ $det(\mathbf{R}_{\alpha} - \lambda \mathbf{I}) = \lambda^{2} - 2\lambda \cos \alpha + 1.$ $The roots are <math>\cos \alpha + \sqrt{\cos^{2} \alpha - 1}$ and $\cos \alpha - \sqrt{\cos^{2} \alpha - 1}$.

Question C32.1: When are these roots real?

When are the eigenvalues of \mathbf{R}_{α} real?

Theo: When $|\cos \alpha| = 1$, then $\sqrt{\cos^2 \alpha - 1} = 0$, and both $\cos \alpha + \sqrt{\cos^2 \alpha - 1}$ and $\cos \alpha - \sqrt{\cos^2 \alpha - 1}$ are real.

Question C32.2: For what angles α will we have $|\cos \alpha| = 1$?

Theo: This will happen when $\alpha = k\pi$ for some integer k. Then $\cos \alpha$ is an eigenvalue of multiplicity 2, and

• either
$$\mathbf{R}_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 is the identity matrix,
• or $\mathbf{R}_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

In the first case, every vector is an eigenvector with eigenvalue 1; in the second case, every vector is an eigenvector with eigenvalue -1. In all other cases, the eigenvalues of \mathbf{R}_{α} form a pair of conjugate complex numbers.

It also works the other way around: Eigenplanes

Frank: All right, you gave us an example. But what is the "insight" that we supposedly get from complex eigenvalues?

Theo: It also works the other way around: Whenever a 2×2 matrix **A** with real elements does have a pair of conjugate complex eigenvalues, the linear transformation $L_{\mathbf{A}}$ involves a rotation of the plane. In the example that I showed you here, $L_{\mathbf{A}}$ was simply a rotation. But it could also be a composition of a rotation with stretches or compressions in one or two directions. I will be happy to show you why—

Bob: Maybe not now. We will explore an example in Module 67.

Cindy: And what if a matrix has a pair of conjugate complex eigenvalues and its order is $n \times n$ for some n > 2?

Theo: Then there exists a so-called *eigenplane*, that is a 2-dimensional subspace V of \mathbb{R}^n so that L_A maps V onto V, and the restriction of L_A involves a rotation of this plane, perhaps composed with some deformations by stretches or compressions.

Question C32.3: Summarize in your own words what you learned from this conversation.

Complex roots of the characteristic polynomial of an $n \times n$ matrix **A** are still considered eigenvalues.

When we are working with vectors in \mathbb{R}^n then any eigenvalue that is not real does not have a corresponding eigenvector though.

Geometrically, a complex eigenvalue that is not real indicates that there is an *eigenplane* such the the restriction of the linear transformation $L_{\mathbf{A}}$ involves a rotation of this plane, perhaps composed with some stretches and/or compressions.