Conversation 32: Complex Eigenvalues

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

What about complex eigenvalues?

Frank: What's the deal with those "complex eigenvalues"? They don't make sense.

Denny: Are you saying, Frank, that they cannot be for real?
Frank: That's a good one! I mean: In this part of the course we always assume that all the vectors \vec{x} are in some \mathbb{R}^{n}, that their coordinates are real numbers. When you multiply such an $\overrightarrow{\mathbf{x}} \neq \overrightarrow{\mathbf{0}}$ with a complex number like $\lambda=1-2 i$, then you get a vector that is not even in \mathbb{R}^{n}, and therefore cannot be equal to $\mathbf{A} \overrightarrow{\mathbf{x}}$. So, how can a complex number like $\lambda=1-2 i$ be an eigenvalue?
Theo: Formally, the eigenvalues of a matrix \mathbf{A} are defined as the roots of the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$. Even when \mathbf{A} has only real elements, some of these roots may not be real numbers. In particular, Frank's $\lambda=1-2 i$ may still be an eigenvalue. But Frank is right, there will be no real eigenvectors with such eigenvalues.
Frank: Thats' exactly my point: These λ are meaningless.

Rotations of the plane

Theo: Not at all! Complex eigenvalues of \mathbf{A} give us important information about the geometry of the linear transformation $L_{\mathbf{A}}$.

Consider, for example, the matrix $\mathbf{R}_{\alpha}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
We have seen that the corresponding linear transformation $L_{\mathbf{R}_{\alpha}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rotation of the plane by an angle α.
For this matrix we get $\mathbf{R}_{\alpha}-\lambda \mathbf{I}=\left[\begin{array}{cc}\cos \alpha-\lambda & -\sin \alpha \\ \sin \alpha & \cos \alpha-\lambda\end{array}\right]$ and $\operatorname{det}\left(\mathbf{R}_{\alpha}-\lambda \mathbf{I}\right)=(\cos \alpha-\lambda)^{2}+(\sin \alpha)^{2}$, which we can expand to $\operatorname{det}\left(\mathbf{R}_{\alpha}-\lambda \mathbf{I}\right)=\lambda^{2}-2 \lambda \cos \alpha+\cos ^{2} \alpha+\sin ^{2} \alpha$, which simplifies to $\operatorname{det}\left(\mathbf{R}_{\alpha}-\lambda \mathbf{I}\right)=\lambda^{2}-2 \lambda \cos \alpha+1$.
The roots are $\cos \alpha+\sqrt{\cos ^{2} \alpha-1}$ and $\cos \alpha-\sqrt{\cos ^{2} \alpha-1}$.
Question C32.1: When are these roots real?

When are the eigenvalues of \mathbf{R}_{α} real?

Theo: When $|\cos \alpha|=1$, then $\sqrt{\cos ^{2} \alpha-1}=0$, and both $\cos \alpha+\sqrt{\cos ^{2} \alpha-1}$ and $\cos \alpha-\sqrt{\cos ^{2} \alpha-1}$ are real.

Question C32.2: For what angles α will we have $|\cos \alpha|=1$?
Theo: This will happen when $\alpha=k \pi$ for some integer k. Then $\cos \alpha$ is an eigenvalue of multiplicity 2 , and

- either $\mathbf{R}_{\alpha}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the identity matrix,
- or $\mathbf{R}_{\alpha}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

In the first case, every vector is an eigenvector with eigenvalue 1 ; in the second case, every vector is an eigenvector with eigenvalue -1 . In all other cases, the eigenvalues of \mathbf{R}_{α} form a pair of conjugate complex numbers.

It also works the other way around: Eigenplanes

Frank: All right, you gave us an example. But what is the "insight" that we supposedly get from complex eigenvalues?

Theo: It also works the other way around: Whenever a 2×2 matrix \mathbf{A} with real elements does have a pair of conjugate complex eigenvalues, the linear transformation $L_{\mathbf{A}}$ involves a rotation of the plane. In the example that I showed you here, $L_{\mathbf{A}}$ was simply a rotation. But it could also be a composition of a rotation with stretches or compressions in one or two directions. I will be happy to show you why-

Bob: Maybe not now. We will explore an example in Module 67.
Cindy: And what if a matrix has a pair of conjugate complex eigenvalues and its order is $n \times n$ for some $n>2$?

Theo: Then there exists a so-called eigenplane, that is a 2-dimensional subspace V of \mathbb{R}^{n} so that $L_{\mathbf{A}}$ maps V onto V, and the restriction of L_{A} involves a rotation of this plane, perhaps composed with some deformations by stretches or compressions.

Take-home message

Question C32.3: Summarize in your own words what you learned from this conversation.

Complex roots of the characteristic polynomial of an $n \times n$ matrix A are still considered eigenvalues.

When we are working with vectors in \mathbb{R}^{n} then any eigenvalue that is not real does not have a corresponding eigenvector though.

Geometrically, a complex eigenvalue that is not real indicates that there is an eigenplane such the the restriction of the linear transformation L_{A} involves a rotation of this plane, perhaps composed with some stretches and/or compressions.

