Conversation 34: Eigenvectors and Eigenvalues of Matrix Transposes and Inverse Matrices

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Eigenvectors and eigenvalues of A^{-1}

Cindy: I'm worried about these eigenvalues and eigenvectors of \mathbf{A}^{-1} and of \mathbf{A}^{T} . For \mathbf{A}^{-1} , the eigenvectors are the same as for \mathbf{A} , but the eigenvalues are usually not, and for \mathbf{A}^{T} , the eigenvalues are the same as for \mathbf{A} , but the eigenvectors are usually not. How can I remember which is which, so as not to get mixed up on the final?

Theo: For the eigenvectors of A^{-1} this is easy to understand in terms of the linear transformations L_A and $L_{A^{-1}}$.

Denny: Oh no! Not again linear transformations!

Theo: When $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A} with eigenvalue λ and when \mathbf{A} is invertible, then the line $span(\vec{\mathbf{x}})$ will be mapped by $L_{\mathbf{A}}$ onto itself and every $\vec{\mathbf{y}}$ on the line $span(\vec{\mathbf{x}})$ will be stretched by a factor of λ .

Cindy: Could we take $\vec{y} = \vec{x}$ here?

Question C34.1: Would Theo's observation apply to \vec{x} itself?

Eigenvectors and eigenvalues of A^{-1} , continued

Theo: Of course! Every vector $\vec{\mathbf{x}}$ is always in $span(\vec{\mathbf{x}})$.

The transformation $L_{\mathbf{A}^{-1}}$ is the inverse function of $L_{\mathbf{A}}$, and undoes the action of $L_{\mathbf{A}}$.

Question C34.2: How would one undo a stretch by a factor of λ ?

Frank: By a corresponding compression.

Bob: Let me see whether I get this straight: Stretching a vector by a factor of λ amounts to multiplying the vector by a factor of λ , and what Frank called the "corresponding compression" amounts to multiplying this vector by a factor of $\frac{1}{\lambda}$, right?

Theo: Right.

Cindy: So that $L_{\mathbf{A}^{-1}}(\vec{\mathbf{x}}) = \mathbf{A}^{-1}\vec{\mathbf{x}} = \frac{1}{\lambda}\vec{\mathbf{x}}$ for our eigenvector $\vec{\mathbf{x}}$ of \mathbf{A} .

Theo: Exactly! Which implies that \vec{x} will be an eigenvector of \mathbf{A}^{-1} with eigenvalue $\frac{1}{\lambda}$.

Eigenvalues and eigenvectors of A^{-1} : The theorem

Theo: This gives a proof of the following theorem:

Theorem

Let **A** be an invertible matrix, and let $\vec{\mathbf{x}}$ be an eigenvector of **A** with eigenvalue λ .

Then $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A}^{-1} with eigenvalue $\frac{1}{\lambda}$.

In other words, $\bf A$ and $\bf A^{-1}$ have the same eigenvectors, and the eigenvalues of $\bf A^{-1}$ are the reciprocals of the eigenvalues of $\bf A$.

Denny: But what if $\lambda = 0$?

Question 37.3: How would you respond to Denny here?

Theo: The theorem assumes that **A** is invertible.

This implies that 0 is not an eigenvalue of **A**, so that $\lambda \neq 0$.

Another proof of the theorem

Theorem

Let **A** be an invertible matrix, and let $\vec{\mathbf{x}}$ be an eigenvector of **A** with eigenvalue λ .

Then $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A}^{-1} with eigenvalue $\frac{1}{\lambda}$.

Denny: Is there another proof without linear transformations?

Alice: Let \vec{x} be an eigenvector of **A** with eigenvalue λ .

Since **A** is invertible, 0 is not an eigenvalue of **A**, so that $\lambda \neq 0$.

Then
$$\lambda \vec{\mathbf{x}} = \mathbf{A}\vec{\mathbf{x}}$$
, so that $\vec{\mathbf{x}} = \frac{1}{\lambda}\mathbf{A}\vec{\mathbf{x}} = \mathbf{A}\frac{1}{\lambda}\vec{\mathbf{x}}$, and

$$\mathbf{A}^{-1}\vec{\mathbf{x}} = \mathbf{A}^{-1}\mathbf{A}\tfrac{1}{\lambda}\vec{\mathbf{x}} = \mathbf{I}\tfrac{1}{\lambda}\vec{\mathbf{x}} = \tfrac{1}{\lambda}\vec{\mathbf{x}}.$$

It follows that $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A}^{-1} with eigenvalue $\frac{1}{\lambda}$. \square

Eigenvalues of the transpose \mathbf{A}^T

Cindy: So how about the eigenvalues and eigenvectors of the transpose \mathbf{A}^T ?

Alice: The eigenvalues of \mathbf{A}^T are the roots of the characteristic polynomial $\det(\mathbf{A}^T-\lambda\mathbf{I})$. In the formula $\mathbf{A}^T-\lambda\mathbf{I}$ we first take the transpose \mathbf{A}^T of \mathbf{A} and then subtract λ from each element of the diagonal.

Bob: Would we get the same result if we first subtract λ from each element of the diagonal of **A** and then take the transpose of the resulting matrix? I mean, is $\mathbf{A}^T - \lambda \mathbf{I} = (\mathbf{A} - \lambda \mathbf{I})^T$?

Alice: Yes. Since the diagonal does not change when you form a matrix transpose, this equality always holds.

Eigenvalues of the transpose \mathbf{A}^T , continued

Cindy: So, when $\mathbf{A}^T - \lambda \mathbf{I} = (\mathbf{A} - \lambda \mathbf{I})^T$, we also must have $\det(\mathbf{A}^T - \lambda \mathbf{I}) = \det((\mathbf{A} - \lambda \mathbf{I})^T)$, right?

Alice: Correct. Now we can use what we have learned about the determinant of the transpose.

Cindy: Like—that $det(\mathbf{C}) = det(\mathbf{C}^T)$ for any matrix **C**?

Alice: Yes. This is true even when some elements of the matrix contain a variable, like λ in our $\mathbf{C} = \mathbf{A} - \lambda \mathbf{I}$.

Cindy: But this implies that A and A^T have the same characteristic polynomial with the same roots, so that the eigenvalues of A^T must be the same as the eigenvalues of A!

Denny: Cool! It is still weird though that \mathbf{A} and \mathbf{A}^T may not have the same eigenvectors, but the eigenvectors of \mathbf{A} turn into left eigenvectors of \mathbf{A}^T when you flip them around.

Eigenvalues and eigenvectors of matrix transposes A

Theo: By "flipping around," do you mean taking transposes? As in the following theorem?

Theorem

Let **A** be a square matrix, and let \vec{x} be an eigenvector of **A** with eigenvalue λ .

Then λ is an eigenvalue of \mathbf{A}^T ,

but $\vec{\mathbf{x}}$ is not always an eigenvector of \mathbf{A}^T .

Moreover, $\vec{\mathbf{x}}^T$ is a left eigenvector with eigenvalue λ of \mathbf{A}^T , which means that $\vec{\mathbf{x}}^T \mathbf{A}^T = \lambda \vec{\mathbf{x}}^T$

Denny: Yeah, this is what I meant.

Turning a column vector $\vec{\mathbf{x}}$ into a row vector $\vec{\mathbf{x}}^T$.

Frank: Are these left eigenvectors good for anything?

Alice: We will talk about an important application of them another time.