Lecture 11: Introduction to Systems of Linear Equations

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Familiar equations of lines in the x-y-plane \mathbb{R}^2

In this chapter, the symbol \mathbb{R}^2 will always denote the set of all 2-dimensional column vectors of real numbers that represent points in the x-y-plane; the symbol \mathbb{R}^3 will always denote the set of all 3-dimensional column vectors of real numbers; and so on.

Consider the familiar equation y = ax + b.

This equation defines a line in the x-y-plane that consists of all

vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ whose coordinates satisfy this equation.

Question L11.1: Can every line in the x-y-plane be defined in this way?

No. For example, the *y*-axis x = 0 cannot be defined by an equation y = ax + b.

Only lines that are not vertical can be defined in this way.

The general form of equations of lines in the x-y-plane \mathbb{R}^2

Now consider equations of the form: $a_1x + a_2y = b$.

- For a₁ := -a and a₂ := 1 we get -ax + y = b.
 This gives the same lines y = ax + b as on the previous slide.
- For a₁ := 1 and a₂ := 0 we get x = b.
 This gives us all vertical lines for suitable choices of b.

Thus we can see that the *most general form of a linear equation* in two variables x, y is:

$$a_1x+a_2y=b,$$

where a_1, a_2, b are constants.

Equations of planes in the three-dimensional space \mathbb{R}^3

Similarly, consider an equation of the form

$$a_1x + a_2y + a_3z = b,$$

where a_1, a_2, a_3, b are constants.

This equation defines a plane in the x-y-z-space \mathbb{R}^3 that consists

of all vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ whose coordinates satisfy this equation.

For example, if $a_1 = a_2 = 0$, while $a_3 = 4$, and b = 12, then $a_1x + a_2y + a_3z = b$ becomes 4z = 12 and defines a horizontal plane that intersects the z-axis at 3.

Equations of hyperplanes in \mathbb{R}^n

Notice that the common feature of the linear equations

$$a_1x + a_2y = b$$
 and $a_1x + a_2y + a_3z = b$

is that the set of their solutions is a subspace of the relevant space (the x-y-plane \mathbb{R}^2 or the x-y-z-space \mathbb{R}^3) of one dimension less.

More generally, consider an equation of the form

$$a_1x_1 + a_2x_2 + \dots a_nx_n = b,$$

where $a_1, a_2, \ldots a_n, b$ are constants, and x_1, x_2, \ldots, x_n are variables.

The solutions of this equation form what is called a *hyperplane* in the space \mathbb{R}^n of all *n*-dimensional column vectors.

Hyperplanes are subspaces of \mathbb{R}^n of dimension n-1.

Systems of linear equations

A system of m linear equations in n variables is an expression

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

We assume here that all a_{ii} and b_i are given scalar constants.

A column vector
$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 of numbers such that

all equations are satisfied is a solution of the system.

Example 1: Two lines with different slopes

Consider the following system of m = 2 linear equations with n = 2 variables:

$$2x_1 + x_2 = 4$$
$$2x_1 + 2x_2 = 6$$

The first equation defines a line with slope -2 in the x_1 - x_2 -plane. The second equation defines a line with slope -1 in the x_1 - x_2 -plane.

The two lines intersect in a single point.

The column vector $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is the unique a solution of the above system.

Uniqueness of solutions is *typical*, but *by no means universal* when *m*, the number of equations, is equal to *n*, the number of variables.

Example 2: Two parallel lines

Consider the following system of m = 2 linear equations with n = 2 variables:

$$2x_1+x_2=4$$

$$4x_1 + 2x_2 = 6$$

Both equations define lines with slope -2 in the x_1 - x_2 -plane.

Question L11.2: Where do these lines intersect the x_2 -axis?

The x_2 -axis consists of all points with $x_1 = 0$. By setting $x_1 := 0$ in the above equations, we find that the first line passes through the point [0,4], while the second line passes through the point [0,3].

These lines are parallel, but distinct.

This system has no solutions whatsoever.

It is inconsistent aka overconstrained aka overdetermined.

Examples 3: Two equations for the same line

Consider the following system of m = 2 linear equations with n = 2 variables:

$$2x_1 + x_2 = 4$$

$$4x_1 + 2x_2 = 8$$

Both equations define the same line with slope -2 that passes through the point [0,4] of the x_1 - x_2 -plane.

This system is consistent, but it has more than one solution.

More precisely, each column vector $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ 4 - 2x_1 \end{bmatrix}$ is a solution.

This system is *underconstrained* aka *underdetermined*, which means that it has **infinitely many solutions**.

Could a linear system have exactly 2 solutions?

Question L11.3: Could there be a system of 2 equations with 2 variables that has exactly 2 solutions?

Not a system of *linear* equations. Since each linear equation with two variables defines a line in \mathbb{R}^2 , if these lines intersect in 2 points, they must be the same line, so that the system will have infinitely many solutions.

More generally, *any* system of linear equations will always have either exactly one solution, infinitely many solutions, or no solutions at all.

Example 4: What if all coefficients a_{ij} are zero?

Consider an equation of the form

$$0x_1+0x_2=b.$$

This is a linear equation with $a_1 = a_2 = 0$.

- When $b \neq 0$, this equation is *inconsistent* and does not have any solution.
- When b=0, every vector $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is a solution,

and this equation is underdetermined.

Linear equations as the one above, with all coefficients a_{ij} equal to zero, are certainly not particularly interesting. But we will see soon why we need to consider them in this course.

Example 5: A system of 2 equations in 3 variables

Consider the following system of m = 2 linear equations with n = 3 variables:

$$2x_1 + x_2 - x_3 = 0$$
$$3x_1 + x_2 - x_3 = 0$$

This system is underdetermined.

Every column vector
$$\vec{\mathbf{x}} = \begin{bmatrix} 0 \\ x_2 \\ x_2 \end{bmatrix}$$
 is a solution.

The above system is also an example of a *homogenous system*, which means that $b_1 = b_2 = \cdots = b_m = 0$.

For homogeneous systems the vector $\vec{\mathbf{0}}$ with $x_1 = x_2 = \cdots = x_n = 0$ is always a solution.

Example 6: Another system of 2 equations in 3 variables

Consider the following system of m = 2 linear equations with n = 3 variables:

$$2x_1 + x_2 - x_3 = 0$$
$$4x_1 + 2x_2 - 2x_3 = 1$$

Question L11.4: Is this system homogeneous? What can you say about its solution set?

This system is **not** homogeneous, because only $b_1 = 0$, but $b_2 \neq 0$.

The system is *inconsistent*, which can be seen by dividing both sides of the second equation by 2.

In general, when the number n of variables of a system of linear equations exceeds the number m of its equations, then the system must be either inconsistent or underconstrained.

Take-home message: Linear equations

The general form of a linear equation in n variables is

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b,$$

where $a_{11}, \ldots, a_{1n}, b$ are fixed scalars and x_1, \ldots, x_n are variables.

For n = 2 variables, this equation defines a line in \mathbb{R}^2 .

For n = 3 variables, this equation defines a plane in \mathbb{R}^3 .

For *n* variables, this equation defines a *hyperplane* in \mathbb{R}^n .

In this lecture we have always treated \mathbb{R}^n as a set of column vectors. For reasons that will soon become apparent, we will do so throughout this chapter and whenever we consider solutions of systems of linear equations.

Take-home message: Systems of linear equations

A system of m linear equations in n variables is an expression

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

We assume that all a_{ij} and b_i are given scalar constants.

A column vector
$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 of numbers such that

all equations are satisfied is a solution of the system.

When $b_1 = b_2 = \cdots = b_m = 0$, the system is *homogeneous*.

Take-home message: Properties of the solution set

Consider a system of m linear equations in n variables.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

The system is *consistent* if it has at least one solution.

Homogeneous systems are always consistent.

Consistent systems may have either one or infinitely many solutions. In the latter case the system is *underdetermined* aka *underconstrained*.

The system is *inconsistent* aka *overdetermined* aka *overconstrained* if it has no solution.

When the number n of variables exceeds the number m of equations, the system will be either underdetermined or inconsistent.