Lecture 17: Using the Inverse Matrix to Solve Linear Systems

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Review: The definition of the matrix inverse

Let **A** be an $n \times n$ square matrix.

The *inverse of* **A** is an $n \times n$ matrix \mathbf{A}^{-1} such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}_n$$
.

Theorem

The inverse \mathbf{A}^{-1} , if it exists, is unique and satisfies $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n$.

Note that the inverse of a matrix is the analogue of a reciprocal $a^{-1}=\frac{1}{a}$ of a number.

A square matrix **A** without an inverse \mathbf{A}^{-1} is called *non-invertible* or *singular*.

If A^{-1} exists, then **A** is *invertible* or *non-singular*.

Linear equations for numbers and matrices

Numbers: Consider a linear equation ax = b.

- If a = 1, then x = b is the unique solution.
- If $a \neq 0$, then $a^{-1}ax = 1x = a^{-1}b$ so that $x = a^{-1}b = \frac{b}{a}$ is the unique solution.
- If a = 0, then there may be infinitely many solutions or none.

Matrices: Consider a linear equation $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$, where \mathbf{A} is square.

- If $\mathbf{A} = \mathbf{I}$, then $\mathbf{I}\vec{\mathbf{x}} = \vec{\mathbf{x}} = \vec{\mathbf{b}}$ is the unique solution.
- If \mathbf{A} is invertible, then $\mathbf{A}^{-1}\mathbf{A}\vec{\mathbf{x}} = \mathbf{I}\vec{\mathbf{x}} = \vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$ so that $\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$ is the unique solution.
- If A is non-invertible, then the system is either underdetermined or inconsistent.

Solving a system with the help of A^{-1} : An example

Consider the system $\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}}$ of linear equations

$$3x_1 = 15$$

 $0.5x_2 = -1$

The coefficient matrix is $\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix}$

Question L17.1: What is A^{-1} ?

Since A is a diagonal matrix, we already know how to calculate

its inverse: $\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{3} & 0\\ 0 & 2 \end{bmatrix}$

The unique solution of the above system can be calculated as:

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{A}^{-1} \vec{\mathbf{b}} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 15 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$

Solving a system with the help of A^{-1} : A second example

Consider the system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ of linear equations

$$x_1 + 2x_2 = 5$$
$$3x_1 + 4x_2 = -1$$

The coefficient matrix is $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

In the previous lecture we found its inverse $\mathbf{A}^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$

Question 17.2: How would you use \mathbf{A}^{-1} to solve the above system?

The unique solution can be obtained as:

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{A}^{-1} \vec{\mathbf{b}} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} -11 \\ 8 \end{bmatrix}$$

Take-home message

Let **A** be a square matrix and let $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ be a system of linear equations with coefficient matrix **A**.

When \mathbf{A}^{-1} exists and is known, then the linear system $\mathbf{A} = \vec{\mathbf{b}}$ has a unique solution that can be computed as the product $\mathbf{A}^{-1}\vec{\mathbf{b}}$.

When \mathbf{A}^{-1} does not exist, then the system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is either underdetermined or inconsistent.