Lecture 18: Finding Inverse Matrices by Gauss-Jordan Elimination

Winfried lust Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Review: The definition of the matrix inverse

Let **A** be an $n \times n$ square matrix.

The *inverse of* **A** is an $n \times n$ matrix \mathbf{A}^{-1} such that

 $A^{-1}A = I_{n}$

Theorem

The inverse A^{-1} , if it exists, is unique and satisfies $AA^{-1} = I_n$.

When **A** is a zero matrix, then **A** does not have an inverse.

For $n > 1$, there are infinitely many more examples of non-invertible aka singular matrices **A** of order $n \times n$, that is matrices that do not have an inverse matrix $\mathsf{A}^{-1}.$

If A^{-1} exists, then A is *invertible* or *non-singular*.

How to find inverse matrices?

We have seen that:

- It is easy to verify that a given pair of matrices are inverses of each other (multiply them and check whether the product is an identity matrix I).
- It can be *relatively easy* to find A^{-1} when A is a diagonal matrix.
- But how do we find A^{-1} in general? Even for a seemingly simple matrix like

$$
\mathbf{A} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix}
$$

this seems hard.

An observation

An $n \times n$ matrix **A** can have an inverse only if Gaussian elimination produces a matrix with all diagonal elements equal to 1. For $n = 3$ this looks as follows:

$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}
$$
 Gaussian elimination
$$
\begin{bmatrix} 1 & ? & ? \ 0 & 1 & ? \ 0 & 0 & 1 \end{bmatrix}
$$

Now we can keep going and apply elementary row operation (E3) more times until we get I:

$$
\begin{bmatrix} 1 & ? & ? \\ 0 & 1 & ? \\ 0 & 0 & 1 \end{bmatrix}
$$
 More applications of (E3)
$$
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

So what? How could this help?

A magic trick: Gauss-Jordan elimination

Let **A** be an $n \times n$ matrix. Form an $n \times 2n$ matrix **C** by dropping the internal brackets in $[A, I_n]$ and replacing them with a vertical dividing line for visual clarity. For $n = 3$ we get:

Perform Gaussian elimination. If the first half of the resulting matrix in row-echelon form has a zero row, then A is not invertible. *Otherwise* keep going and apply instances of $(E3)$ until the first half turns into I_n so that the entire matrix is in reduced row echelon form. For $n = 3$ the result will look like:

$$
\begin{bmatrix} 1 & 0 & 0 & b_{11} & b_{12} & b_{13} \\ 0 & 1 & 0 & b_{21} & b_{22} & b_{23} \\ 0 & 0 & 1 & b_{31} & b_{32} & b_{33} \end{bmatrix}
$$

Let's see what we get for the matrix B in the second half.

Trying out the magic trick

Let
$$
\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
$$
 Here we already know $\mathbf{A}^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$

Form a 2 \times 4 matrix **C** and perform Gaussian elimination on it:

$$
\mathbf{C} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{bmatrix} \xrightarrow{R2 \rightarrow R2-3R1} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{bmatrix} \xrightarrow{R2 \rightarrow R2/(-2)} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 \end{bmatrix}
$$

Apply (E3) one more time to turn the first half into I_2 :

$$
\begin{bmatrix} 1 & 2 & 1 & 0 \ 0 & 1 & 1.5 & -0.5 \end{bmatrix} \xrightarrow{R1 \rightarrow R1-2R2} \begin{bmatrix} 1 & 0 & -2 & 1 \ 0 & 1 & 1.5 & -0.5 \end{bmatrix}
$$

Magically, the matrix B in the right half is A^{-1} !

Trying the magic trick on another matrix

Let
$$
\mathbf{A} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix}
$$
 Here we don't know \mathbf{A}^{-1} .

Form a 3×6 matrix **C** and perform Gaussian elimination on it. Start by subtracting row 1 from row 2:

$$
\mathbf{C} = \begin{bmatrix} 0.5 & 0.5 & 0 & 1 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 1 & 0 \\ 0 & 0.5 & 0.5 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.5 & 0.5 & 0 & 1 & 0 & 0 \\ 0 & -0.5 & 0.5 & -1 & 1 & 0 \\ 0 & 0.5 & 0.5 & 0 & 0 & 1 \end{bmatrix}
$$

Next add row 2 to row 3:

$$
\begin{bmatrix} 0.5 & 0.5 & 0 & 1 & 0 & 0 \\ 0 & -0.5 & 0.5 & -1 & 1 & 0 \\ 0 & 0.5 & 0.5 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.5 & 0.5 & 0 & 1 & 0 & 0 \\ 0 & -0.5 & 0.5 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}
$$

Trying the magic trick on another matrix, continued

Multiply row 1 by 2:

$$
\begin{bmatrix} 0.5 & 0.5 & 0 & 1 & 0 & 0 \ 0 & -0.5 & 0.5 & -1 & 1 & 0 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \ 0 & -0.5 & 0.5 & -1 & 1 & 0 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}
$$

Multiply row 2 by -2:

$$
\begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \ 0 & -0.5 & 0.5 & -1 & 1 & 0 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \ 0 & 1 & -1 & 2 & -2 & 0 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}
$$

The first half is now in row echelon form.

Question L18.1: Are we done?

Not yet. We still need to get rid of the nonzero off-diagonal elements in the first half of this matrix.

Add row 3 to row 2:

$$
\begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \ 0 & 1 & -1 & 2 & -2 & 0 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \ 0 & 1 & 0 & 1 & -1 & 1 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}
$$

Question L18.2: What should we do next?

Subtract row 2 from row 1:

$$
\begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \ 0 & 1 & 0 & 1 & -1 & 1 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & -1 \ 0 & 1 & 0 & 1 & -1 & 1 \ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}
$$

Did the magic work? We will verify this by hand.

This magic trick is often called Gauss-Jordan elimination.

To see why it works, it will be most convenient to treat the matrix $[A, I_n]$ and the matrix C that is obtained from it after dropping the internal brackets as the same object (shown for $n = 3$):

$$
\mathbf{C} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} = [\mathbf{A}, \mathbf{I}_n]
$$

The end result of the procedure can be written as follows (first the special case for $n = 3$, then the general case is shown):

$$
\begin{bmatrix} 1 & 0 & 0 & b_{11} & b_{12} & b_{13} \ 0 & 1 & 0 & b_{21} & b_{22} & b_{23} \ 0 & 0 & 1 & b_{31} & b_{32} & b_{33} \end{bmatrix} = [\mathbf{I}_n, \mathbf{B}]
$$

 $C = [A, I_n]$

Question L18.3: What does multiplying C from the left with E_1 do to the matrices **A** and I_n ?

$E_1C = E_1[A, I_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

 $[E_1A, E_1I_n]$

$E_2E_1C = E_2E_1[A, I_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

 $[E_2E_1A, E_2E_1I_n]$

$E_3E_2E_1C = E_3E_2E_1[A, I_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

 $[E_3E_2E_1A, E_3E_2E_1I_n]$

... $E_3E_2E_1C = ... E_3E_2E_1[A, I_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

[... $E_3E_2E_1A$, ... $E_3E_2E_1I_n$]

Why does the magic trick work?

The procedure involves successively applying elementary row operations to the matrix C . These can be implemented by successively multiplying C from the left by elementary matrices $E_1, E_2, E_3, \ldots, E_k$:

$$
\textbf{E}_k \ldots \textbf{E}_3 \textbf{E}_2 \textbf{E}_1 \textbf{C} = \textbf{E}_k \ldots \textbf{E}_3 \textbf{E}_2 \textbf{E}_1 [\textbf{A}, \textbf{I}_n]
$$

These operations do *the same thing* to the two matrices in the expression on the right:

 $[E_k ... E_3E_2E_1A, E_k ... E_3E_2E_1I_n] = [I_n, B]$

The second coordinate shows that

 $B = E_k ... E_3E_2E_1I_n = E_k ... E_3E_2E_1$.

The first coordinate shows that $(E_k \dots E_3E_2E_1)A = BA = I_n$. It follows that $B = A^{-1}$.

Practice: One more example of Gauss-Jordan elimination

Let
$$
\mathbf{A} = \begin{bmatrix} 0 & 0.5 \\ 1 & 2 \end{bmatrix}
$$
 We want to find \mathbf{A}^{-1} .

Form a 2 × 4 matrix
$$
\mathbf{C} = \begin{bmatrix} 0 & 0.5 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}
$$
.

Question L18.4: What should we do next?

Switch rows 1 and 2:

$$
\begin{bmatrix} 0 & 0.5 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \overset{\mathcal{R}1\leftrightarrow\mathcal{R}2}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0.5 & 1 & 0 \end{bmatrix}
$$

Question L18.5: What should we do next?

Multiply row 2 by 2:

$$
\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0.5 & 1 & 0 \end{bmatrix} \overset{R2 \mapsto 2R2}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}
$$

Practice example of Gauss-Jordan elimination, completed

Let
$$
\mathbf{A} = \begin{bmatrix} 0 & 0.5 \\ 1 & 2 \end{bmatrix}
$$
 We want to find \mathbf{A}^{-1} .

We formed a 2 × 4 matrix
$$
\mathbf{C} = \begin{bmatrix} 0 & 0.5 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}
$$

and transformed it into $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}$

Question L18.6: What should we do next?

Subtract 2 times row 2 from row 1:

$$
\begin{bmatrix} 1 & 2 & 0 & 1 \ 0 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{R2 \to R1-2R2} \begin{bmatrix} 1 & 0 & -4 & 1 \ 0 & 1 & 2 & 0 \end{bmatrix}
$$

The matrix $\mathbf{B} = \begin{bmatrix} -4 & 1 \ 2 & 0 \end{bmatrix}$ in the right half is \mathbf{A}^{-1}

Summary: A magic trick aka Gauss-Jordan elimination

Let **A** be an $n \times n$ matrix. Form an $n \times 2n$ matrix **C** by dropping the internal brackets in $[A, I_n]$ and replacing them with a vertical dividing line for visual clarity. For $n = 3$ we get:

Perform Gaussian elimination. If the first half of the resulting matrix in row-echelon form has a zero row, then A is not invertible. *Otherwise* keep going and apply instances of (E3) until the first half turns into I_n so that the entire matrix is in reduced row echelon form. For $n = 3$ the result will look like:

$$
\begin{bmatrix} 1 & 0 & 0 & b_{11} & b_{12} & b_{13} \ 0 & 1 & 0 & b_{21} & b_{22} & b_{23} \ 0 & 0 & 1 & b_{31} & b_{32} & b_{33} \end{bmatrix}
$$

The matrix B in the second half will be the inverse A^{-1} .

Winfried Just, Ohio University [MATH3200, Lecture 18: Gauss-Jordan Elimination](#page-0-0)