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Review: The definition of the matrix inverse

Let A be an n × n square matrix.

The inverse of A is an n × n matrix A−1 such that

A−1A = In.

Theorem

The inverse A−1, if it exists, is unique and satisfies AA−1 = In.

When A is a zero matrix, then A does not have an inverse.

For n > 1, there are infinitely many more examples of
non-invertible aka singular matrices A of order n × n, that is
matrices that do not have an inverse matrix A−1.

If A−1 exists, then A is invertible or non-singular.
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How to find inverse matrices?

We have seen that:

It is easy to verify that a given pair of matrices are inverses of
each other (multiply them and check whether the product is
an identity matrix I).

It can be relatively easy to find A−1 when A is a diagonal
matrix.

But how do we find A−1 in general?

Even for a seemingly simple matrix like

A =

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5


this seems hard.
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An observation

An n× n matrix A can have an inverse only if Gaussian elimination
produces a matrix with all diagonal elements equal to 1.

For n = 3 this looks as follows:a11 a12 a13
a21 a22 a23
a31 a32 a33

 Gaussian elimination−→

1 ? ?
0 1 ?
0 0 1


Now we can keep going and apply elementary row operation (E3)
more times until we get I:1 ? ?

0 1 ?
0 0 1

 More applications of (E3)
−→

1 0 0
0 1 0
0 0 1


So what? How could this help?
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A magic trick: Gauss-Jordan elimination

Let A be an n × n matrix. Form an n × 2n matrix C by dropping
the internal brackets in [A, In] and replacing them with a vertical
dividing line for visual clarity. For n = 3 we get:a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


Perform Gaussian elimination. If the first half of the resulting
matrix in row-echelon form has a zero row, then A is not
invertible. Otherwise keep going and apply instances of (E3) until
the first half turns into In so that the entire matrix is in reduced
row echelon form. For n = 3 the result will look like:1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33


Let’s see what we get for the matrix B in the second half.
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Trying out the magic trick

Let A =

[
1 2
3 4

]
Here we already know A−1 =

[
−2 1
1.5 −0.5

]
Form a 2× 4 matrix C and perform Gaussian elimination on it:

C =

[
1 2
3 4

∣∣∣∣ 1 0
0 1

]
R27→R2−3R1−→

[
1 2
0 −2

∣∣∣∣ 1 0
−3 1

]
[

1 2
0 −2

∣∣∣∣ 1 0
−3 1

]
R27→R2/(−2)−→

[
1 2
0 1

∣∣∣∣ 1 0
1.5 −0.5

]
Apply (E3) one more time to turn the first half into I2:[

1 2
0 1

∣∣∣∣ 1 0
1.5 −0.5

]
R17→R1−2R2−→

[
1 0
0 1

∣∣∣∣ −2 1
1.5 −0.5

]

Magically, the matrix B in the right half is A−1!
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Trying the magic trick on another matrix

Let A =

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

 Here we don’t know A−1.

Form a 3× 6 matrix C and perform Gaussian elimination on it.

Start by subtracting row 1 from row 2:

C =

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 −→
0.5 0.5 0

0 −0.5 0.5
0 0.5 0.5

∣∣∣∣∣∣
1 0 0
−1 1 0
0 0 1


Next add row 2 to row 3:0.5 0.5 0

0 −0.5 0.5
0 0.5 0.5

∣∣∣∣∣∣
1 0 0
−1 1 0
0 0 1

 −→
0.5 0.5 0

0 −0.5 0.5
0 0 1

∣∣∣∣∣∣
1 0 0
−1 1 0
−1 1 1
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Trying the magic trick on another matrix, continued

Multiply row 1 by 2:

0.5 0.5 0
0 −0.5 0.5
0 0 1

∣∣∣∣∣∣
1 0 0
−1 1 0
−1 1 1

 −→
1 1 0

0 −0.5 0.5
0 0 1

∣∣∣∣∣∣
2 0 0
−1 1 0
−1 1 1


Multiply row 2 by -2:

1 1 0
0 −0.5 0.5
0 0 1

∣∣∣∣∣∣
2 0 0
−1 1 0
−1 1 1

 −→
1 1 0

0 1 −1
0 0 1

∣∣∣∣∣∣
2 0 0
2 −2 0
−1 1 1


The first half is now in row echelon form.

Question L18.1: Are we done?

Not yet. We still need to get rid of the nonzero off-diagonal
elements in the first half of this matrix.
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Trying the magic trick on another matrix, completed

Add row 3 to row 2:

1 1 0
0 1 −1
0 0 1

∣∣∣∣∣∣
2 0 0
2 −2 0
−1 1 1

 −→
1 1 0

0 1 0
0 0 1

∣∣∣∣∣∣
2 0 0
1 −1 1
−1 1 1



Question L18.2: What should we do next?

Subtract row 2 from row 1:

1 1 0
0 1 0
0 0 1

∣∣∣∣∣∣
2 0 0
1 −1 1
−1 1 1

 −→
1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
1 1 −1
1 −1 1
−1 1 1


Did the magic work? We will verify this by hand.
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Why does the magic trick work?

This magic trick is often called Gauss-Jordan elimination.

To see why it works, it will be most convenient to treat the matrix
[A, In] and the matrix C that is obtained from it after dropping the
internal brackets as the same object (shown for n = 3):

C =

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 = [A, In]

The end result of the procedure can be written as follows (first the
special case for n = 3, then the general case is shown):1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33

 = [In,B]
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Why does the magic trick work?

The procedure involves successively applying elementary row
operations to the matrix C. These can be implemented by
successively multiplying C from the left by elementary matrices
E1,E2,E3, . . . ,Ek :

C = [A, In]

Question L18.3: What does multiplying C from the left with E1

do to the matrices A and In?
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Why does the magic trick work?

The procedure involves successively applying elementary row
operations to the matrix C. These can be implemented by
successively multiplying C from the left by elementary matrices
E1,E2,E3, . . . ,Ek :

E1C = E1[A, In]

These operations do the same thing to the two matrices in the
expression on the right:

[E1A, E1In]
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Why does the magic trick work?

The procedure involves successively applying elementary row
operations to the matrix C. These can be implemented by
successively multiplying C from the left by elementary matrices
E1,E2,E3, . . . ,Ek :

E2E1C = E2E1[A, In]

These operations do the same thing to the two matrices in the
expression on the right:

[E2E1A, E2E1In]
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Why does the magic trick work?

The procedure involves successively applying elementary row
operations to the matrix C. These can be implemented by
successively multiplying C from the left by elementary matrices
E1,E2,E3, . . . ,Ek :

E3E2E1C = E3E2E1[A, In]

These operations do the same thing to the two matrices in the
expression on the right:

[E3E2E1A, E3E2E1In]
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Why does the magic trick work?

The procedure involves successively applying elementary row
operations to the matrix C. These can be implemented by
successively multiplying C from the left by elementary matrices
E1,E2,E3, . . . ,Ek :

. . .E3E2E1C = . . .E3E2E1[A, In]

These operations do the same thing to the two matrices in the
expression on the right:

[. . .E3E2E1A, . . .E3E2E1In]
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Why does the magic trick work?

The procedure involves successively applying elementary row
operations to the matrix C. These can be implemented by
successively multiplying C from the left by elementary matrices
E1,E2,E3, . . . ,Ek :

Ek . . .E3E2E1C = Ek . . .E3E2E1[A, In]

These operations do the same thing to the two matrices in the
expression on the right:

[Ek . . .E3E2E1A, Ek . . .E3E2E1In] = [In,B]

The second coordinate shows that

B = Ek . . .E3E2E1In = Ek . . .E3E2E1.

The first coordinate shows that (Ek . . .E3E2E1)A = BA = In.

It follows that B = A−1.

Winfried Just, Ohio University MATH3200, Lecture 18: Gauss-Jordan Elimination



Practice: One more example of Gauss-Jordan elimination

Let A =

[
0 0.5
1 2

]
We want to find A−1.

Form a 2× 4 matrix C =

[
0 0.5
1 2

∣∣∣∣ 1 0
0 1

]
.

Question L18.4: What should we do next?

Switch rows 1 and 2:[
0 0.5
1 2

∣∣∣∣ 1 0
0 1

]
R1↔R2−→

[
1 2
0 0.5

∣∣∣∣ 0 1
1 0

]

Question L18.5: What should we do next?

Multiply row 2 by 2:[
1 2
0 0.5

∣∣∣∣ 0 1
1 0

]
R27→2R2−→

[
1 2
0 1

∣∣∣∣ 0 1
2 0

]
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Practice example of Gauss-Jordan elimination, completed

Let A =

[
0 0.5
1 2

]
We want to find A−1.

We formed a 2× 4 matrix C =

[
0 0.5
1 2

∣∣∣∣ 1 0
0 1

]

and transformed it into

[
1 2
0 1

∣∣∣∣ 0 1
2 0

]

Question L18.6: What should we do next?

Subtract 2 times row 2 from row 1:[
1 2
0 1

∣∣∣∣ 0 1
2 0

]
R27→R1−2R2−→

[
1 0
0 1

∣∣∣∣ −4 1
2 0

]

The matrix B =

[
−4 1
2 0

]
in the right half is A−1
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Summary: A magic trick aka Gauss-Jordan elimination

Let A be an n × n matrix. Form an n × 2n matrix C by dropping
the internal brackets in [A, In] and replacing them with a vertical
dividing line for visual clarity. For n = 3 we get:a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


Perform Gaussian elimination. If the first half of the resulting
matrix in row-echelon form has a zero row, then A is not
invertible. Otherwise keep going and apply instances of (E3) until
the first half turns into In so that the entire matrix is in reduced
row echelon form. For n = 3 the result will look like:1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33


The matrix B in the second half will be the inverse A−1.
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