Lecture 18: Finding Inverse Matrices by Gauss-Jordan Elimination

Winfried Just Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Review: The definition of the matrix inverse

Let **A** be an $n \times n$ square matrix.

The *inverse of* **A** is an $n \times n$ matrix \mathbf{A}^{-1} such that

 $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n.$

Theorem

The inverse A^{-1} , if it exists, is unique and satisfies $AA^{-1} = I_n$.

When **A** is a zero matrix, then **A** does not have an inverse.

For n > 1, there are infinitely many more examples of *non-invertible* aka *singular* matrices **A** of order $n \times n$, that is matrices that do not have an inverse matrix \mathbf{A}^{-1} .

If A^{-1} exists, then **A** is *invertible* or *non-singular*.

How to find inverse matrices?

We have seen that:

- It is *easy to verify* that a given pair of matrices are inverses of each other (multiply them and check whether the product is an identity matrix **I**).
- It can be *relatively easy* to find A⁻¹ when A is a diagonal matrix.
- But how do we find A⁻¹ in general?
 Even for a seemingly simple matrix like

$$\mathbf{A} = \begin{bmatrix} 0.5 & 0.5 & 0\\ 0.5 & 0 & 0.5\\ 0 & 0.5 & 0.5 \end{bmatrix}$$

this seems *hard*.

An observation

An $n \times n$ matrix **A** can have an inverse only if Gaussian elimination produces a matrix with all diagonal elements equal to 1. For n = 3 this looks as follows:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
Gaussian elimination
$$\begin{bmatrix} 1 & ? & ? \\ 0 & 1 & ? \\ 0 & 0 & 1 \end{bmatrix}$$

Now we can keep going and apply elementary row operation (E3) more times until we get I:

$$\begin{bmatrix} 1 & ? & ? \\ 0 & 1 & ? \\ 0 & 0 & 1 \end{bmatrix} \text{ More applications of (E3) } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So what? How could this help?

A magic trick: Gauss-Jordan elimination

Let **A** be an $n \times n$ matrix. Form an $n \times 2n$ matrix **C** by dropping the internal brackets in $[\mathbf{A}, \mathbf{I}_n]$ and replacing them with a vertical dividing line for visual clarity. For n = 3 we get:

a ₁₁	a_{12}	a ₁₃	1	0	0]
a ₂₁	a 22	a ₂₃	0	1	0
a ₃₁	a ₁₂ a ₂₂ a ₃₂	a ₃₃	0	0	1

Perform Gaussian elimination. If *the first half* of the resulting matrix in row-echelon form has a zero row, then **A** is not invertible. *Otherwise* keep going and apply instances of (E3) until the first half turns into I_n so that the entire matrix is in reduced row echelon form. For n = 3 the result will look like:

$$\begin{bmatrix} 1 & 0 & 0 & b_{11} & b_{12} & b_{13} \\ 0 & 1 & 0 & b_{21} & b_{22} & b_{23} \\ 0 & 0 & 1 & b_{31} & b_{32} & b_{33} \end{bmatrix}$$

Let's see what we get for the matrix B in the second half.

Trying out the magic trick

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 Here we already know $\mathbf{A}^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$

Form a 2×4 matrix **C** and perform Gaussian elimination on it:

$$\mathbf{C} = \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 3 & 4 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \mapsto R_2 - 3R_1} \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & -2 & | & -3 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & -2 & | & -3 & 1 \end{bmatrix} \xrightarrow{R_2 \mapsto R_2/(-2)} \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & 1.5 & -0.5 \end{bmatrix}$$

Apply (E3) one more time to turn the first half into I_2 :

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 \end{bmatrix} \xrightarrow{R_1 \mapsto R_1 - 2R_2} \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1.5 & -0.5 \end{bmatrix}$$

Magically, the matrix B in the right half is A^{-1} !

Trying the magic trick on another matrix

Let
$$\mathbf{A} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix}$$
 Here we don't know \mathbf{A}^{-1} .

Form a 3×6 matrix **C** and perform Gaussian elimination on it. Start by subtracting row 1 from row 2:

$$\mathbf{C} = \begin{bmatrix} 0.5 & 0.5 & 0 & | & 1 & 0 & 0 \\ 0.5 & 0 & 0.5 & | & 0 & 1 & 0 \\ 0 & 0.5 & 0.5 & | & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.5 & 0.5 & 0 & | & 1 & 0 & 0 \\ 0 & -0.5 & 0.5 & | & -1 & 1 & 0 \\ 0 & 0.5 & 0.5 & | & 0 & 0 & 1 \end{bmatrix}$$

Next add row 2 to row 3:

$$\begin{bmatrix} 0.5 & 0.5 & 0 & | & 1 & 0 & 0 \\ 0 & -0.5 & 0.5 & -1 & 1 & 0 \\ 0 & 0.5 & 0.5 & | & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.5 & 0.5 & 0 & | & 1 & 0 & 0 \\ 0 & -0.5 & 0.5 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{bmatrix}$$

Trying the magic trick on another matrix, continued

Multiply row 1 by 2:

$$\begin{bmatrix} 0.5 & 0.5 & 0 & | & 1 & 0 & 0 \\ 0 & -0.5 & 0.5 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & | & 2 & 0 & 0 \\ 0 & -0.5 & 0.5 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{bmatrix}$$

Multiply row 2 by -2:

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \\ 0 & -0.5 & 0.5 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

The first half is now in row echelon form.

Question L18.1: Are we done?

Not yet. We still need to get rid of the nonzero off-diagonal elements in the first half of this matrix.

Add row 3 to row 2:

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

Question L18.2: What should we do next?

Subtract row 2 from row 1:

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

Did the magic work? We will verify this by hand.

This magic trick is often called Gauss-Jordan elimination.

To see why it works, it will be most convenient to treat the matrix $[\mathbf{A}, \mathbf{I}_n]$ and the matrix \mathbf{C} that is obtained from it after dropping the internal brackets as the same object (shown for n = 3):

$$\mathbf{C} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 1 & 0 \\ a_{31} & a_{32} & a_{33} & 0 & 0 & 1 \end{bmatrix} = [\mathbf{A}, \mathbf{I}_n]$$

The end result of the procedure can be written as follows (first the special case for n = 3, then the general case is shown):

$$\begin{bmatrix} 1 & 0 & 0 & b_{11} & b_{12} & b_{13} \\ 0 & 1 & 0 & b_{21} & b_{22} & b_{23} \\ 0 & 0 & 1 & b_{31} & b_{32} & b_{33} \end{bmatrix} = [\mathbf{I}_n, \mathbf{B}]$$

 $\mathbf{C} = [\mathbf{A}, \mathbf{I}_n]$

Question L18.3: What does multiplying **C** from the left with E_1 do to the matrices **A** and I_n ?

$\textbf{E}_1\textbf{C} = \textbf{E}_1[\textbf{A},\textbf{I}_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

 $\begin{bmatrix} \mathsf{E}_1 \mathsf{A}, & \mathsf{E}_1 \mathsf{I}_n \end{bmatrix}$

$\textbf{E}_2\textbf{E}_1\textbf{C} = \textbf{E}_2\textbf{E}_1[\textbf{A},\textbf{I}_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

 $\begin{bmatrix} \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}, & \mathbf{E}_2 \mathbf{E}_1 \mathbf{I}_n \end{bmatrix}$

$\textbf{E}_3\textbf{E}_2\textbf{E}_1\textbf{C} = \textbf{E}_3\textbf{E}_2\textbf{E}_1[\textbf{A},\textbf{I}_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

 $\begin{bmatrix} \mathsf{E}_3 \mathsf{E}_2 \mathsf{E}_1 \mathsf{A}, & \mathsf{E}_3 \mathsf{E}_2 \mathsf{E}_1 \mathsf{I}_n \end{bmatrix}$

$\ldots \textbf{E}_3\textbf{E}_2\textbf{E}_1\textbf{C} = \ldots \textbf{E}_3\textbf{E}_2\textbf{E}_1[\textbf{A},\textbf{I}_n]$

These operations do *the same thing* to the two matrices in the expression on the right:

 $[\dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}, \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{I}_n]$

Why does the magic trick work?

The procedure involves successively applying elementary row operations to the matrix **C**. These can be implemented by successively multiplying **C** from the left by elementary matrices $\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3, \ldots, \mathbf{E}_k$:

$$\mathbf{E}_k \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{C} = \mathbf{E}_k \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 [\mathbf{A}, \mathbf{I}_n]$$

These operations do *the same thing* to the two matrices in the expression on the right:

 $[\mathbf{E}_k \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}, \quad \mathbf{E}_k \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{I}_n] = [\mathbf{I}_n, \mathbf{B}]$

The second coordinate shows that

 $\mathbf{B} = \mathbf{E}_k \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{I}_n = \mathbf{E}_k \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1.$

The first coordinate shows that $(\mathbf{E}_k \dots \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1)\mathbf{A} = \mathbf{B}\mathbf{A} = \mathbf{I}_n$. It follows that $\mathbf{B} = \mathbf{A}^{-1}$.

Practice: One more example of Gauss-Jordan elimination

Let
$$\mathbf{A} = \begin{bmatrix} 0 & 0.5 \\ 1 & 2 \end{bmatrix}$$
 We want to find \mathbf{A}^{-1}

Form a 2 × 4 matrix
$$\mathbf{C} = \begin{bmatrix} 0 & 0.5 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$
.

Question L18.4: What should we do next?

Switch rows 1 and 2:

$$\begin{bmatrix} 0 & 0.5 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0.5 & 1 & 0 \end{bmatrix}$$

Question L18.5: What should we do next?

Multiply row 2 by 2:

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0.5 & 1 & 0 \end{bmatrix} \stackrel{R_2 \mapsto 2R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

Winfried Just, Ohio University MATH3200, Lecture 18: Gauss-Jordan Elimination

Practice example of Gauss-Jordan elimination, completed

Let
$$\mathbf{A} = \begin{bmatrix} 0 & 0.5 \\ 1 & 2 \end{bmatrix}$$
 We want to find \mathbf{A}^{-1}

We formed a 2 × 4 matrix
$$\mathbf{C} = \begin{bmatrix} 0 & 0.5 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$

and transformed it into $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}$

Question L18.6: What should we do next?

Subtract 2 times row 2 from row 1:

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{R_2 \mapsto R_1 - 2R_2} \begin{bmatrix} 1 & 0 & -4 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

The matrix $\mathbf{B} = \begin{bmatrix} -4 & 1 \\ 2 & 0 \end{bmatrix}$ in the right half is \mathbf{A}^{-1}

Summary: A magic trick aka Gauss-Jordan elimination

Let **A** be an $n \times n$ matrix. Form an $n \times 2n$ matrix **C** by dropping the internal brackets in $[\mathbf{A}, \mathbf{I}_n]$ and replacing them with a vertical dividing line for visual clarity. For n = 3 we get:

a ₁₁	a ₁₂ a ₂₂ a ₃₂	a ₁₃	1	0	0]
a ₂₁	a ₂₂	a ₂₃	0	1	0
a ₃₁	a 32	a ₃₃	0	0	1

Perform Gaussian elimination. If *the first half* of the resulting matrix in row-echelon form has a zero row, then **A** is not invertible. *Otherwise* keep going and apply instances of (E3) until the first half turns into I_n so that the entire matrix is in reduced row echelon form. For n = 3 the result will look like:

Γ1	0	0	b_{11}	b_{12}	b ₁₃
0	1	0	b_{21}	b ₂₂	b ₂₃
0	0	1	b_{31}	b ₃₂	b ₃₃

The matrix B in the second half will be the inverse A^{-1} .

Winfried Just, Ohio University MATH3200, Lecture 18: Gauss-Jordan Elimination