Lecture 25B: Applications of Bases Parametrization and Change of Bases

Winfried Just
Department of Mathematics, Ohio University

MATH 3200: Applied Linear Algebra

The key property of bases

Definition

Let V be a vector space. A linearly independent spanning set of V is called a *basis* of V.

While there are several ways of defining bases, our definition is the most convenient one for applications. Recall from Lecture 24:

Theorem

Let $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ be a set of vectors of the same order. Then these vectors are linearly independent if, and only if, every vector $\vec{\mathbf{w}}$ in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k)$ can be expressed as

$$\vec{\mathbf{w}} = c_1 \vec{\mathbf{v}}_1 + c_2 \vec{\mathbf{v}}_2 + \dots + c_k \vec{\mathbf{v}}_k$$

for exactly one choice of the coefficients c_1, c_2, \ldots, c_k .

Thus if $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$, then every vector $\vec{\mathbf{w}}$ in V = span(B) can be expressed as a linear combination of vectors in B for exactly one choice of coefficients c_1, c_2, \dots, c_k . These coefficients can then be treated as the *coordinates* of $\vec{\mathbf{w}}$ with respect to B.

Review: The vectors $\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \dots, \vec{\mathbf{e}}_n$

For example, consider the following vectors in \mathbb{R}^n for a given n:

$$ec{\mathbf{e}}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} \qquad ec{\mathbf{e}}_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix} & \dots & ec{\mathbf{e}}_n = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}$$

When we treat \mathbb{R}^n as a set of row vectors, we would use the same notation $\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \dots, \vec{\mathbf{e}}_n$ for

$$\vec{\mathbf{e}}_1 = [1, 0, \dots, 0]$$
 $\vec{\mathbf{e}}_2 = [0, 1, \dots, 0]$ \dots $\vec{\mathbf{e}}_n = [0, 0, \dots, 1]$

Either way, these vectors are called the *standard basis vectors* of \mathbb{R}^n , and $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ forms the *standard basis* of \mathbb{R}^n .

In the remainder of this lecture we will work with column vectors.

Cartesian coordinates

Consider any vector $\vec{\mathbf{x}}$ in \mathbb{R}^n for a given n. Then

$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

In the notation of the standard basis vectors, we can write this as

$$\vec{\mathbf{x}} = x_1 \vec{\mathbf{e}}_1 + x_2 \vec{\mathbf{e}}_2 + \dots + x_n \vec{\mathbf{e}}_n,$$

and the coefficients of this linear combination are unique.

So we can uniquely identify each vector in \mathbb{R}^n in terms of

these coefficients
$$\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

which are its Cartesian coordinates.

(Alternative) coordinates with respect to a given basis

Now let $B = {\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k}$ be any basis for a vector space V.

Then any vector $\vec{\mathbf{w}}$ in V can be expressed as a linear combination $\vec{\mathbf{w}} = c_1 \vec{\mathbf{v}}_1 + c_2 \vec{\mathbf{v}}_2 + \cdots + c_k \vec{\mathbf{v}}_k$,

and the coefficients of this linear combination are unique.

So we can uniquely identify each vector in V in terms of

these coefficients
$$\vec{\mathbf{c}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}$$

which are its (alternative) coordinates with respect to B.

We will use the word "alternative" when *B* is *not* the standard basis.

We can also call \vec{c} a parametrization of \vec{w} with respect to B.

What are parametrizations good for?

Why would anyone ever want to use alternative coordinates?

Let
$$\vec{\mathbf{v}}_1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]^T$$
, $\vec{\mathbf{v}}_2 = [9, 8, 7, 6, 5, 4, 3, 2, 1]^T$, let $B = {\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2}$, and let $V = span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$.

Then B is a basis for V, and V is a 2-dimensional subspace of \mathbb{R}^9 .

Let
$$\vec{\mathbf{w}} = [-8, -6, -4, -2, 0, 2, 4, 6, 8]^T = \vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2$$
.

Then $\vec{\mathbf{w}}$ is in V, and the alternative coordinates of $\vec{\mathbf{w}}$

with respect to
$$B$$
 are $\vec{\mathbf{c}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Note that we need only 2 numbers for representing $\vec{\mathbf{w}}$ in alternative coordinates, but we would need 9 numbers to represent $\vec{\mathbf{w}}$ in Cartesian coordinates.

Situations like this one occur frequently when we want to represent vectors in a low-dimensional subspace of a high-dimensional space. Think about how much computer memory could be saved if we would work here with vectors in, for example $\mathbb{R}^{10,000}$ instead of \mathbb{R}^9 .

Switching between Cartesian and alternative coordinates: Some easy examples

Let
$$\vec{\mathbf{v}}_1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]^T$$
, $\vec{\mathbf{v}}_2 = [9, 8, 7, 6, 5, 4, 3, 2, 1]^T$, let $B = {\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2}$, and let $V = span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$.

Let
$$\vec{\mathbf{w}} = [10, 10, 10, 10, 10, 10, 10, 10, 10]^T$$
.

Question L25.2: Find the **alternative coordinates** of $\vec{\mathbf{w}}$ with respect to B.

Here $\vec{\mathbf{w}} = \vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2$.

The alternative coordinates of $\vec{\mathbf{w}}$ with respect to B are $\vec{\mathbf{c}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Question L25.3: Find the Cartesian coordinates of the vector $\vec{\mathbf{w}}$ that has alternative coordinates $\vec{\mathbf{c}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Here $\vec{\mathbf{w}} = 2\vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2$. Thus the Cartesian coordinates $\vec{\mathbf{x}}$ of $\vec{\mathbf{w}}$ are $\vec{\mathbf{x}} = [-7, -4, -1, 2, 5, 8, 11, 14, 17]^T$

Expressing \vec{c} in Cartesian coordinates: General method

Suppose $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ is a basis of a vector space V and the basis vectors are written in Cartesian coordinates. Consider a vector $\vec{\mathbf{w}}$ in V with alternative coordinates $\vec{\mathbf{c}} = [c_1, \dots, c_k]^T$ with respect to B.

Then we can get the Cartesian coordinates \vec{x} of \vec{w} by computing the following linear combination:

$$\vec{\mathbf{x}} = \mathbf{c_1}\vec{\mathbf{v}}_1 + \mathbf{c_2}\vec{\mathbf{v}}_2 + \dots + \mathbf{c_k}\vec{\mathbf{v}}_k$$

For the example of Question L25.3 we got from this calculation:

$$\vec{\mathbf{w}} = \frac{2\vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2}{2} = \frac{2[1, 2, 3, 4, 5, 6, 7, 8, 9]^T - [9, 8, 7, 6, 5, 4, 3, 2, 1]^T}{\vec{\mathbf{x}} = [-7, -4, -1, 2, 5, 8, 11, 14, 17]^T}$$

When we write the vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k$ in the given order as the columns of a matrix \mathbf{B} , then the above expression for $\vec{\mathbf{x}}$ can be written in matrix notation as:

$$\vec{x} = B\vec{c}$$

Expressing $\vec{\mathbf{w}}$ in alternative coordinates: General method

Suppose $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ is a basis of a vector space V and the basis vectors are written in **Cartesian coordinates**.

Consider a vector $\vec{\mathbf{w}}$ with Cartesian coordinates $\vec{\mathbf{x}}$.

If $\vec{\mathbf{w}}$ is in V = span(B), then there must be unique coefficients $\vec{\mathbf{c}} = [c_1, c_2, \dots, c_k]^T$ such that:

$$\mathbf{c_1}\vec{\mathbf{v}}_1 + \mathbf{c_2}\vec{\mathbf{v}}_2 + \dots + \mathbf{c_k}\vec{\mathbf{v}}_k = \vec{\mathbf{x}}$$

These coefficients will be the alternative coordinates of $\vec{\mathbf{w}}$ with respect to B.

Therefore, as we learned in Lecture 22 and Module 42, finding alternative coordinates of $\vec{\mathbf{w}}$ with respect to B boils down to solving a system of linear equations. Since B was assumed to be a basis, if this system is consistent, that is, if $\vec{\mathbf{w}}$ is in fact in V, then this system will have a unique solution.

Expressing $\vec{\mathbf{w}}$ in alternative coordinates when k = n

Suppose $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_n\}$ is a basis of the *entire space* \mathbb{R}^n for some n and the basis vectors are written in Cartesian coordinates.

Let $\vec{\mathbf{w}}$ be a vector in \mathbb{R}^n with Cartesian coordinates $\vec{\mathbf{x}}$.

Then there are unique coefficients $\vec{\mathbf{c}} = [c_1, c_2, \dots, c_n]^T$ such that:

$$\mathbf{c_1}\vec{\mathbf{v}}_1 + \mathbf{c_2}\vec{\mathbf{v}}_2 + \dots + \mathbf{c_n}\vec{\mathbf{v}}_n = \vec{\mathbf{x}}$$

These coefficients will be the **alternative coordinates** of $\vec{\mathbf{w}}$ with respect to B.

Finding these alternative coordinates \vec{c} of \vec{w} with respect to B boils down to solving a system of linear equations. Since B was assumed to be a basis of \mathbb{R}^n , this system will always have a unique solution. If we write the basic vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ in the given order as the columns of a matrix \mathbf{B} , then \mathbf{B} will be invertible, and this unique solution is given by

$$\vec{c} = B^{-1}\vec{x}$$

Take-home message: Bases and parametrization

For a given n, we let $\vec{\mathbf{e}}_i$ denote the vector in \mathbb{R}^n that has 1 in position i and 0 in all other positions. The set $\{\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \dots, \vec{\mathbf{e}}_n\}$ forms the *standard basis* of \mathbb{R}^n .

Its elements $\vec{\mathbf{e}}_i$ are called *standard basis vectors*.

Given any basis $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ of a vector space V, for every vector $\vec{\mathbf{w}}$ in V there exists exactly one vector $\vec{\mathbf{c}} = [c_1, \dots, c_k]^T$ of coefficients such that

$$\vec{\mathbf{w}} = c_1 \vec{\mathbf{v}}_1 + c_2 \vec{\mathbf{v}}_2 + \dots + c_k \vec{\mathbf{v}}_k$$

These vectors $\vec{\mathbf{c}}$ give us *coordinates* for the elements of V and can be used to *parametrize* V.

When $V = \mathbb{R}^n$ and B is the standard basis, we get the Cartesian coordinates; for other bases B we get alternative coordinates with respect to B.

Take-home message: Changing bases

Suppose $B = \{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_k\}$ is a basis of a linear subspace V of some \mathbb{R}^n .

Let **B** be a matrix whose columns contain these basis vectors as columns in the given order, written in **Cartesian coordinates**.

Consider a vector $\vec{\mathbf{w}}$ in V with Cartesian coordinates $\vec{\mathbf{x}}$ and alternative coordinates $\vec{\mathbf{c}} = [c_1, \dots, c_k]^T$ with respect to B. Then

$$\mathbf{c_1}\vec{\mathbf{v}}_1 + \mathbf{c_2}\vec{\mathbf{v}}_2 + \dots + \mathbf{c_k}\vec{\mathbf{v}}_k = \vec{\mathbf{x}}$$

Thus we can compute \vec{x} from \vec{c} as the matrix product

$$\vec{x} = B\vec{c}$$

We can find the \vec{c} by solving the above system of linear equations.

When k = n and B is a basis for the entire space, then **B** is invertible and we can compute $\vec{\mathbf{c}}$ from $\vec{\mathbf{x}}$ as the matrix product

$$\vec{\mathbf{c}} = \mathbf{B}^{-1} \vec{\mathbf{x}}$$