Lecture 29: The Rank and Theory of Solutions How to Represent Solution Sets

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Two theorems

Let us explicitly state as theorems two results that were discussed in Conversation 29:

Theorem

Consider a linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ with \mathbf{A} of order $m \times n$.

- When $r(\mathbf{A}) = m$, the system is always consistent.
- When $r(\mathbf{A}) < m$, the system is consistent for some, but not for all choices of $\vec{\mathbf{b}}$.

Theorem

Consider a linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ with \mathbf{A} of order $m \times n$.

- When $r(\mathbf{A}) = n$, the system is either inconsistent or has exactly one solution.
- When $r(\mathbf{A}) < n$, the system is either inconsistent or has infinitely many solutions.

One more theorem

Theorem

Suppose **A** is the coefficient matrix of a linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Let \vec{x} be a solution of this system and let \vec{y} be another vector. Then \vec{y} is also a solution of the same system if, and only if, $\vec{x} - \vec{y}$ is in N(A).

In other words, when \vec{x} is one solution of the system $A\vec{x} = \vec{b}$, then all other solutions must be of the form $\vec{x} + \vec{z}$, where \vec{z} is in N(A).

It follows that when $\bf A$ is of order $m \times n$, the solution set of ${\bf A} \vec{\bf x} = \vec{\bf b}$ can always be written as the set of all vectors of the form $\vec{\bf x} + \vec{\bf z}$, where $\vec{\bf z}$ belongs to a vector space of dimension $dim(N({\bf A})) = n - r({\bf A})$.

Question L29.1: Suppose **A** is a 3×5 matrix with $r(\mathbf{A}) = 3$. Then $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is always consistent. How does the solution set look like?

Here $dim(N(\mathbf{A})) = 5 - 3 = 2$, so that the solution set will be a plane. It will be a plane through the origin if, and only if, $\vec{\mathbf{b}} = \vec{\mathbf{0}}$ so that $\vec{\mathbf{0}}$ is a solution. Note that $\vec{\mathbf{b}} \neq 0$, then $\mathbf{A}\vec{\mathbf{0}} = \vec{\mathbf{0}} \neq \vec{\mathbf{b}}$, so that $\vec{\mathbf{0}}$ is not a solution of the system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ and will not lie in this plane.

Example 1

Here the coefficient matrix is $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Since $r(\mathbf{A}) = 2 = m$, the system is consistent for every choice of $\vec{\mathbf{b}}$.

Here the extended matrix of the system is already in row-reduced form and we can solve the system by back-substitution, choosing one of the variables x_1, x_2 as our *free parameter*.

Question L29.2: What do we get when we choose x_1 as our free parameter?

The solution set consists of all vectors $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ b_1 - b_2 - x_1 \\ b_2 \end{bmatrix}$

Example 1, completed

Here the coefficient matrix is $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

 $dim(N(\mathbf{A})) = 1$ and $N(\mathbf{A})$ consists of all vectors $\begin{bmatrix} x_1 \\ -x_1 \\ 0 \end{bmatrix}$.

 $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}$ is a basis of $N(\mathbf{A})$. The solution set consists of all

vectors $\begin{bmatrix} 0 \\ b_1 - b_2 \\ b_2 \end{bmatrix} + x_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ where $\begin{bmatrix} 0 \\ b_1 - b_2 \\ b_2 \end{bmatrix}$ is one solution.

Example 2

Here the coefficient matrix is $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Since $r(\mathbf{A}) = 1 < m$, the system is consistent only for some $\vec{\mathbf{b}}$. More precisely, the system is consistent only when $b_2 = 0$.

If $b_2 = 0$, we can solve the system by back-substitution, choosing 2 among the variables x_1, x_2, x_3 as our *free parameters*.

When we choose, for example, x_1 and x_3 as free parameters we find that

the solution set consists of all vectors $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ b_1 - x_1 - x_3 \\ x_3 \end{bmatrix}$

Example 2, completed

Here the coefficient matrix is $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Question L29.3: What are dim(N(A)) and N(A)?

$$dim(N(\mathbf{A})) = 2$$
 and $N(\mathbf{A})$ consists of all vectors $\begin{bmatrix} x_1 \\ -x_1 - x_3 \\ x_3 \end{bmatrix}$.

$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}$$
 is a basis of $N(\mathbf{A})$. The solution set

consists of all vectors
$$\begin{bmatrix} 0 \\ 0 \\ b_1 \end{bmatrix} + x_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

Take-home message: What do these examples illustrate?

In both examples we had $r(\mathbf{A}) < n$. In Example 1 we needed $dim(N(\mathbf{A})) = 1$ free parameter and in Example 2 we needed $dim(N(\mathbf{A})) = 2$ free parameters to describe the solution set.

Theorem

Suppose $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is a consistent linear system with a coefficient matrix of order $m \times n$. Then the solution set can be described by choosing exactly $k = \dim(N(\mathbf{A})) = n - r(\mathbf{A})$ among the variables x_1, \ldots, x_n as free parameters.

In both examples we could pick one particular solution $\vec{\mathbf{x}}$ and a basis $B = \{\vec{\mathbf{z}}_1, \dots, \vec{\mathbf{z}}_k\}$ of $N(\mathbf{A})$ so that all solution vectors could be written in the form $\vec{\mathbf{x}} + c_1\vec{\mathbf{z}}_1 + \dots + c_k\vec{\mathbf{z}}_k$ for some coefficients. This will always be possible in view of the theorem on slide 3.

When the basis B of $N(\mathbf{A})$ is constructed in the way that we learned in Lecture 28, we can choose our free variables x_i as coefficients c_i here. But note that c_2 for Example 2 would be x_3 .