Lecture 34: Applications of Determinants to the Geometry of Linear Transformations

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra Spring Semester 2019

Review linear transformations $L_{\mathbf{A}}$

Recall from Chapter 3 that when **A** is a 2×2 matrix, then **A** defines a linear transformation $L_{\mathbf{A}} : \mathbb{R}^2 \to \mathbb{R}^2$ given by:

$$L_{\mathbf{A}}\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \mathbf{A}\begin{bmatrix}x\\y\end{bmatrix}$$

Similarly, when **A** is a 3×3 matrix, then **A** defines a linear transformation $L_{\mathbf{A}} : \mathbb{R}^3 \to \mathbb{R}^3$ given by:

$$L_{\mathbf{A}} \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \mathbf{A} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Let
$$\alpha$$
 be an angle, and let $\mathbf{R}_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

Recall from Chapter 3 that $L_{\mathbf{R}_{\alpha}}: \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation by an angle of α . The transformation can be implemented by a sheet of paper without turning it over. It *preserves orientation* and *preserves the areas* of rectangular and other regions.

Question L34.1: What is $det(\mathbf{R}_{\alpha})$?

$$\det(\mathbf{R}_{\alpha}) = \cos^2 \alpha + \sin^2 \alpha = 1.$$

Let
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix}$$

Recall that $L_{\mathbf{A}}: \mathbb{R}^2 \to \mathbb{R}^2$ corresponds to a stretch by a factor of 3 in the x-direction and a compression by a factor of 2 in the y-direction. The transformation can be implemented by deforming a sheet of elastic material that lies flat on a surface without turning it over. It preserves orientation.

The rectangle with endpoints (0,0), (1,0), (0,1), (1,1) of area 1 will be mapped to the rectangle with endpoints (0,0), (3,0), (0,0.5), (3,0.5) of area 1.5.

One can show that this transformation *increases the areas* of any rectangle, or any other region, *by a factor of 1.5*.

Note that here $det(\mathbf{A}) = 3(0.5) = 1.5$.

Let
$$\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Recall that $L_{\mathbf{B}}: \mathbb{R}^2 \to \mathbb{R}^2$ switches the x- and y-coordinates. The transformation can be implemented by flipping over a sheet of paper along the diagonal. It *reverses orientation* but *preserves the areas* of all rectangles and other regions.

Note that here $det(\mathbf{B}) = (0)(0) - (1)(1) = -1$.

Let
$$\mathbf{C} = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$$

Then
$$\begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ x + 2y \end{bmatrix}$$

It follows that $L_{\mathbf{C}}: \mathbb{R}^2 \to \mathbb{R}^2$ maps the entire x-y-plane onto the y-axis. In particular, each region will be mapped to a subset of a line, which has area 0.

Note that here $\det(\mathbf{C}) = (0)(2) - (0)(1) = 0$.

We notice a pattern ...

Question 34.2: Let **A** be a 2×2 matrix. How is $det(\mathbf{A})$ related to geometric properties of the linear transformation $L_{\mathbf{A}}: \mathbb{R}^2 \to \mathbb{R}^2$? Make a guess based on what you observed in the preceding examples.

The following theorem describes the pattern that we observed:

Theorem

Let **A** be a matrix of order 2×2 and let $L_{\textbf{A}}:\mathbb{R}^2\to\mathbb{R}^2$ be the transformation of the Euclidean plane that is defined by **A**. Then

- (i) $L_{\mathbf{A}}$ maps any region of area A onto a region of area $|\det(\mathbf{A})|A$.
- (ii) If $det(\mathbf{A}) > 0$, then $L_{\mathbf{A}}$ preserves orientation.
- (iii) If $det(\mathbf{A}) < 0$, then $L_{\mathbf{A}}$ reverses orientation.
- (iv) If $det(\mathbf{A}) = 0$, then $L_{\mathbf{A}}$ maps \mathbb{R}^2 to a lower-dimensional subspace.

A similar pattern holds when **A** has order 3×3

Theorem

Let **A** be a matrix of order 3×3 and let $L_{\textbf{A}} : \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation of the Euclidean space that is defined by **A**. Then

- (i) $L_{\mathbf{A}}$ maps any region of volume V onto a region of volume $|\det(\mathbf{A})|V$.
- (ii) If $det(\mathbf{A}) > 0$, then $L_{\mathbf{A}}$ preserves orientation.
- (iii) If $det(\mathbf{A}) < 0$, then $L_{\mathbf{A}}$ reverses orientation.
- (iv) If $\det(\mathbf{A}) = 0$, then $L_{\mathbf{A}}$ maps \mathbb{R}^3 to a lower-dimensional subspace.

Here the transformation could be implemented as a continuous deformation and/or rotation of solid objects if, and only if, it preserves orientation.