Lecture 35: Calculating Determinants by Cofactor Expansion

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

In this lecture you will learn an alternative method for calculating the determinant of a square matrix.

This method often works well when the matrix is sparse, that is, when most of its elements are equal to 0 .

First we need to introduce two new concepts: minors and cofactors.

A minor of a matrix \mathbf{A} is a determinant of any square submatrix of \mathbf{A}.

Consider the following matrix:

$$
\mathbf{A}=\left[\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20
\end{array}\right]
$$

All of the following numbers are examples of minors:

$$
\left|\begin{array}{ccc}
1 & 3 & 4 \\
6 & 8 & 9 \\
11 & 13 & 14
\end{array}\right|=0 \quad\left|\begin{array}{cc}
7 & 10 \\
17 & 20
\end{array}\right|=-30 \quad \operatorname{det}([12])=12
$$

Minors, continued

Consider the matrix:
$\mathbf{A}=\left[\begin{array}{lllll}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\end{array}\right]=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20\end{array}\right]$

Question L35.1: Is $\left[\begin{array}{cc}8 & 9 \\ 13 & 14\end{array}\right]$ a minor of \mathbf{A} ?
No. $\left[\begin{array}{cc}8 & 9 \\ 13 & 14\end{array}\right]$ is a square submatrix of \mathbf{A}, but minors are
by definition numbers. The corresponding minor would be
its determinant $\left|\begin{array}{cc}8 & 9 \\ 13 & 14\end{array}\right|=-5$.

The cofactor of the element $a_{i j}$ of a square matrix \mathbf{A} is the product of $(-1)^{i+j}$ with the minor that is obtained by removing the $\boldsymbol{i}^{\text {th }}$ row and the $\mathbf{j}^{\text {th }}$ column of \mathbf{A}.

Example: Find the cofactor of a_{23} :
$\mathbf{A}=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right] \longrightarrow\left[\begin{array}{cccc}a_{11} & a_{12} & \square & a_{14} \\ \boldsymbol{\square} & \boldsymbol{\square} & \boldsymbol{\square} \\ a_{31} & a_{32} & \boldsymbol{\square} & a_{34} \\ a_{41} & a_{42} & \square & a_{44}\end{array}\right]$
$\longrightarrow\left[\begin{array}{lll}a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44}\end{array}\right] \longrightarrow\left|\begin{array}{lll}a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44}\end{array}\right|$
$\longrightarrow(-1)^{2+3}\left|\begin{array}{lll}a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44}\end{array}\right| \longrightarrow(-1)\left|\begin{array}{lll}a_{11} & a_{12} & a_{14} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44}\end{array}\right|$

Cofactors: An example

The cofactor of the element $a_{i j}$ of a square matrix \mathbf{A} is the product of $(-1)^{i+j}$ with the minor that is obtained by removing the $\mathbf{i}^{\text {th }}$ row and the $\mathrm{j}^{\text {th }}$ column of \mathbf{A}.

Question L35.2: Find the cofactor of a_{24} in $\mathbf{A}=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 6 & 7 & 8 & 9 \\ 2 & 3 & 5 & 7 \\ 11 & 13 & 17 & 19\end{array}\right]$

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & \square \\
\square & \square & \square & \square \\
2 & 3 & 5 & \square \\
11 & 13 & 17 & \square
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 5 \\
11 & 13 & 17
\end{array}\right] \rightarrow\left|\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 5 \\
11 & 13 & 17
\end{array}\right|
$$

$\longrightarrow(-1)^{2+4}\left|\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 5 \\ 11 & 13 & 17\end{array}\right| \longrightarrow 1\left|\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 5 \\ 11 & 13 & 17\end{array}\right|=7$

Let \mathbf{A} be any square matrix.
We can calculate $\operatorname{det}(\mathbf{A})$ as follows:
(1) Pick any row or column.
(2) For each element of the chosen row or column, find its cofactor.
(3) Multiply each element in the cosen row or column by its cofactor.
(4) Sum the results.

The method works best if you choose the row or column along which you want to expand as one that contains a lot of zero elements.

Expansion by cofactors: An example

Let $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 6 & 7 & 8 \\ 4 & 9 & 5\end{array}\right]$
Expand along the first column:

$$
\begin{aligned}
& \operatorname{det}(\mathbf{A})=1(-1)^{1+1}\left|\begin{array}{ll}
7 & 8 \\
9 & 5
\end{array}\right|+6(-1)^{2+1}\left|\begin{array}{ll}
2 & 3 \\
9 & 5
\end{array}\right|+4(-1)^{3+1}\left|\begin{array}{ll}
2 & 3 \\
7 & 8
\end{array}\right|= \\
& 1(1)((7)(5)-(8)(9))+6(-1)((2)(5)-(3)(9))+4(1)((2)(8)-(3)(7)) \\
& \operatorname{det}(\mathbf{A})=1(-37)-6(-17)+4(-5)=45
\end{aligned}
$$

Expansion by cofactors: 3×3 matrices

$$
\begin{aligned}
\text { Let } \mathbf{A}= & {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \text { Expand along the first } r } \\
\operatorname{det}(\mathbf{A})= & a_{11}(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{12}(-1)^{1+2}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +a_{13}(-1)^{1+3}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
\operatorname{det}(\mathbf{A})= & a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) . \\
\operatorname{det}(\mathbf{A})= & a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31} .
\end{aligned}
$$

We obtain the formula that was shown in a previous lecture.

Expansion by cofactors: Another example

Suppose you want to use cofactor expansion along a column of the
matrix $\mathbf{A}=\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 6 & 7 & 8 & 9 \\ 4 & 0 & 0 & 5 \\ -2 & -1 & 0 & 1\end{array}\right]$ to compute $\operatorname{det}(\mathbf{A})$.
Question L35.3: Along which column should you expand?
Expand along the third column: $\mathbf{A}=\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 6 & 7 & 8 & 9 \\ 4 & 0 & 0 & 5 \\ -2 & -1 & 0 & 1\end{array}\right]$
$\operatorname{det}(\mathbf{A})=0+8(-1)^{2+3}\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 0 & 5 \\ -2 & -1 & 1\end{array}\right|+0+0=8(-1)\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 0 & 5 \\ -2 & -1 & 1\end{array}\right|$

Expansion by cofactors: The example completed

$$
\operatorname{det}(\mathbf{A})=0+8(-1)^{2+3}\left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & 5 \\
-2 & -1 & 1
\end{array}\right|+0+0=8(-1)\left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & 5 \\
-2 & -1 & 1
\end{array}\right|
$$

Question L35.4: If we now want to expand along a row, which row should we choose?

Now expand along the second row:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & 5 \\
-2 & -1 & 1
\end{array}\right|=4(-1)^{2+1}\left|\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right|+0+5(-1)^{2+3}\left|\begin{array}{cc}
1 & 2 \\
-2 & -1
\end{array}\right| \\
& \left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 0 & 5 \\
-2 & -1 & 1
\end{array}\right|=4(-1)(5)+5(-1)(3)=-35 . \\
& \operatorname{det}(\mathbf{A})=8(-1)(-35)=280 .
\end{aligned}
$$

A minor of a matrix \mathbf{A} is a determinant of any square submatrix of \mathbf{A}.

The cofactor of the element $a_{i j}$ of a square matrix \mathbf{A} is the product of $(-1)^{i+j}$ with the minor that is obtained by removing the $\boldsymbol{i}^{\text {th }}$ row and the $\mathbf{j}^{\text {th }}$ column of \mathbf{A}.

We can calculate $\operatorname{det}(\mathbf{A})$ by cofactor expansion as follows:
(1) Pick any row or column.
(2) For each element of the chosen row or column, find its cofactor.
(3) Multiply each element in the chosen row or column by its cofactor.
(4) Sum the results.

The method works best if you choose the row or column along which you expand as one that contains many zero elements.

