Lecture 36: Eigenvectors and Eigenvalues: Introduction

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Two motivating examples

Let
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix}$$
 $\vec{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\vec{\mathbf{x}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Then:

$$\mathbf{A}\vec{\mathbf{x}}_1 = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\textbf{A}\vec{\textbf{x}}_2 = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} = 0.5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Now consider
$$\mathbf{B} = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix}$$
 $\vec{\mathbf{x}}_3 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\vec{\mathbf{x}}_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Then:

$$\mathbf{B}\vec{\mathbf{x}}_3 = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\mathbf{B}\vec{\mathbf{x}}_4 = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Question L36.1: What do the vectors $\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2, \vec{\mathbf{x}}_3, \vec{\mathbf{x}}_4$ in the above examples have in common?

Eigenvectors and eigenvalues: Definition

Definition

A nonzero vector $\vec{\mathbf{x}}$ is an eigenvector (or characteristic vector) of a square matrix \mathbf{A} if there exists a scalar λ such that $\mathbf{A}\vec{\mathbf{x}}=\lambda\vec{\mathbf{x}}$.

Then λ is an eigenvalue (or characteristic value) of **A**.

Note: An eigenvalue is allowed to be 0, but eigenvectors are not allowed to be zero vectors.

In our first motivating example:

 $\mathbf{A}\vec{\mathbf{x}}_1 = 3\vec{\mathbf{x}}_1$, so that $\vec{\mathbf{x}}_1$ is an eigenvector of \mathbf{A} with eigenvalue 3.

 $\mathbf{A}\vec{\mathbf{x}}_2 = 0.5\vec{\mathbf{x}}_2$, so that $\vec{\mathbf{x}}_2$ is an eigenvector of \mathbf{A} with eigenvalue 0.5.

In our second motivating example:

 $\mathbf{B}\vec{\mathbf{x}}_3 = 5\vec{\mathbf{x}}_3$, so that $\vec{\mathbf{x}}_3$ is an eigenvector of \mathbf{B} with eigenvalue 5.

 $\mathbf{B}\vec{\mathbf{x}}_4 = 2\vec{\mathbf{x}}_4$, so that $\vec{\mathbf{x}}_4$ is an eigenvector of \mathbf{B} with eigenvalue 2.

A third example

Let
$$\mathbf{C} = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$$
 $\vec{\mathbf{x}}_5 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\vec{\mathbf{x}}_6 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\vec{\mathbf{x}}_7 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ Then

$$\boldsymbol{C}\vec{\boldsymbol{x}}_5 = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \qquad \boldsymbol{C}\vec{\boldsymbol{x}}_6 = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\textbf{C}\vec{\textbf{x}}_7 = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

Question L36.2: Is \vec{x}_5 an eigenvector of **C**? If so, what is its eigenvalue?

Question L36.3: Is \vec{x}_6 an eigenvector of **C**? If so, what is its eigenvalue?

Question L36.4: Is \vec{x}_7 an eigenvector of **C**? If so, what is its eigenvalue?

A third example

Let
$$\mathbf{C} = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$$
 $\vec{\mathbf{x}}_5 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\vec{\mathbf{x}}_6 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\vec{\mathbf{x}}_7 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ Then

$$\boldsymbol{C}\vec{\boldsymbol{x}}_5 = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \qquad \boldsymbol{C}\vec{\boldsymbol{x}}_6 = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{C}\vec{\mathsf{x}}_7 = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

Answer L36.2: $\vec{\mathbf{x}}_5$ an eigenvector of **C** with eigenvalue $\lambda = -2$.

Answer L36.3: \vec{x}_6 is not an eigenvector of C, because a zero vector is never an eigenvector.

Answer L36.4: \vec{x}_7 an eigenvector of **C** with eigenvalue $\lambda = 2$.

A fourth example

$$\text{Let } \textbf{D} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \quad \vec{\textbf{x}}_8 = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \quad \vec{\textbf{x}}_9 = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \quad \vec{\textbf{x}}_{10} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad \vec{\textbf{x}}_{11} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{D}\vec{\mathbf{x}}_8 = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ -12 \end{bmatrix} \quad \mathbf{D}\vec{\mathbf{x}}_9 = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

$$\mathbf{D}\vec{\mathbf{x}}_{10} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \qquad \mathbf{D}\vec{\mathbf{x}}_{11} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Question L36.5: Is \vec{x}_8 an eigenvector of **D**? If so, what is its eigenvalue?

Question L36.6: Is \vec{x}_9 an eigenvector of **D**? If so, what is its eigenvalue?

Question L36.7: Is \vec{x}_{10} an eigenvector of **D**? If so, what is its eigenvalue?

Question L36.8: Is \vec{x}_{11} an eigenvector of **D**? If so, what is its eigenvalue?

A fourth example

Let
$$\mathbf{D} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix}$$
 $\vec{\mathbf{x}}_8 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ $\vec{\mathbf{x}}_9 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ $\vec{\mathbf{x}}_{10} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $\vec{\mathbf{x}}_{11} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\textbf{D}\vec{\textbf{x}}_8 = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ -12 \end{bmatrix} \quad \textbf{D}\vec{\textbf{x}}_9 = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

$$\mathbf{D}\vec{\mathbf{x}}_{10} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \qquad \mathbf{D}\vec{\mathbf{x}}_{11} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Answer L36.5: \vec{x}_8 an eigenvector of **D** with eigenvalue $\lambda = 4$.

Answer L36.6: $\vec{\mathbf{x}}_9$ an eigenvector of **D** with eigenvalue $\lambda = 4$.

Answer L36.7: \vec{x}_{10} is not an eigenvector of **D**.

Answer L36.8: $\vec{\mathbf{x}}_{11}$ is an eigenvector of **D** with eigenvalue $\lambda = 0$.

An important observation

Proposition

Let A be a square matrix.

If $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A} with eigenvalue λ , then for every scalar $c \neq 0$ the vector $c\vec{\mathbf{x}}$ is also an eigenvector of \mathbf{A} with the same eigenvalue λ .

Proof: Let $\vec{\mathbf{x}}$ be an eigenvector of \mathbf{A} with eigenvalue λ , and let $c \neq 0$.

We need to show that $c\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ and $\mathbf{A}(c\vec{\mathbf{x}}) = \lambda(c\vec{\mathbf{x}})$.

The former follows from the assumptions that $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ and $c \neq 0$.

By properties of matrix multiplication and our assumptions:

$$\mathbf{A}(c\mathbf{\vec{x}}) = c(\mathbf{A}\mathbf{\vec{x}}) = c(\lambda\mathbf{\vec{x}}) = \lambda(c\mathbf{\vec{x}}).$$

Another important observation

Proposition

Let A be a square matrix.

The matrix **A** has an eigenvalue $\lambda = 0$ if, and only if, **A** is singular.

Proof: Note that $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A} with eigenvalue 0 if, and only if, $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ and $\mathbf{A}\vec{\mathbf{x}} = 0\vec{\mathbf{x}} = \vec{\mathbf{0}}$.

This means that the homogeneous system $A\vec{x} = \vec{0}$ has a nonzero solution and is underdetermined (as $\vec{0}$ is always a solution).

By the theorem at the end of Conversation 30, the latter property is equivalent to $\det(\mathbf{A}) = 0$, which means that \mathbf{A} is singular.

Example 1 revisited: Some observations

Let
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix}$$

- $\vec{\mathbf{e}}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1 = 3$.
- $\vec{\mathbf{e}}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_2 = 0.5$.
- The eigenvalues are distinct, $\lambda_1 \neq \lambda_2$.
- These two eigenvectors are linearly independent.

Example 2 revisited: Some observations

Let
$$\mathbf{B} = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix}$$

- $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1 = 5$.
- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_2=2$.
- The eigenvalues are distinct, $\lambda_1 \neq \lambda_2$.
- These two eigenvectors are linearly independent.

Example 3 revisited: Some observations

Let
$$\mathbf{C} = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$$

- $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1 = -2$.
- $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_2 = 2$.
- The eigenvalues are distinct, $\lambda_1 \neq \lambda_2$.
- These two eigenvectors are linearly independent.

Example 4 revisited: Some observations

Let
$$\mathbf{D} = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix}$$

- ullet $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1=0.$
- ullet $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_2=4$.
- The eigenvalues are distinct, $\lambda_1 \neq \lambda_2$.
- These two eigenvectors are linearly independent.

These observations generalize

Definition

Let **A** be an $n \times n$ matrix. We say that **A** has a *full set of eigenvectors* if there exist n eigenvectors of **A** that form a linearly independent set.

Theorem

Let **A** be an $n \times n$ matrix. Assume **A** has n pairwise distinct real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Then A has a full set of eigenvectors.

We will see later why we need to explicitly assume here that all eigenvalues are real numbers.

Eigenvalues and eigenvectors: The easy case

Suppose **D** is a diagonal matrix.

Consider a standard basic vector $\vec{\mathbf{e}}_i$. Then

$$\mathbf{D}\vec{\mathbf{e}}_{i} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_{i} & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & 0 & \dots & \lambda_{n} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \lambda_{i} \\ \vdots \\ 0 \end{bmatrix} = \lambda_{i}\vec{\mathbf{e}}_{i}.$$

Thus $\vec{\mathbf{e}}_i$ is an eigenvector with eigenvalue λ_i .

The set $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is linearly independent.

Thus **D** has a full set of eigenvectors, regardless of whether or not the eigenvalues are all distinct.

Take-home message

A *nonzero* vector $\vec{\mathbf{x}}$ is an *eigenvector* of a square matrix \mathbf{A} if there exists a scalar λ such that $\mathbf{A}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.

Then λ is an *eigenvalue* of **A**.

An eigenvalue is allowed to be 0, but eigenvectors are not allowed to be zero vectors.

If $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A} with eigenvalue λ , then for every scalar $c \neq 0$ the vector $c\vec{\mathbf{x}}$ is also an eigenvector of \mathbf{A} with the same eigenvalue λ .

The matrix **A** has an eigenvalue $\lambda = 0$ if, and only if, **A** is singular.

A square matrix \mathbf{A} has a *full set of eigenvectors* if there exist n eigenvectors of \mathbf{A} that form a linearly independent set.

If **A** has order $n \times n$ and has n pairwise distinct eigenvalues, then **A** has a full set of eigenvectors.

For a diagonal matrix \mathbf{D} , the eigenvalues are the elements of the (main) diagonal, and the eigenvectors are the standard basis vectors $\vec{\mathbf{e}}_i$ that form a full set of eigenvectors of \mathbf{D} .