Lecture 38: Eigenvectors and Eigenvalues of Inverse Matrices and Matrix Transposes

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

An example

In this lecture we will explore how the eigenvalues and eigenvectors of a square matrix ${\bf A}$ are related to the eigenvalues and eigenvectors of ${\bf A}^{-1}$ and ${\bf A}^T$.

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$$
 and let $\mathbf{B} = \begin{bmatrix} 0.25 & 0.75 \\ 0.25 & -0.25 \end{bmatrix}$

$$\text{Then } \boldsymbol{A}\boldsymbol{B} = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0.25 & 0.75 \\ 0.25 & -0.25 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ \text{Thus } \boldsymbol{B} = \boldsymbol{A}^{-1}.$$

In Lecture 36 we had explored the matrix A and found:

- ullet $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_1 = -2$.
- $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_2=2.$

An example, continued

Let
$$\mathbf{A}=\begin{bmatrix}1&3\\1&-1\end{bmatrix}$$
 Then $\mathbf{A}^{-1}=\begin{bmatrix}0.25&0.75\\0.25&-0.25\end{bmatrix}$

$$\vec{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 is an eigenvector of \mathbf{A} with eigenvalue $\lambda_1 = -2$.

Question L38.1: Is \vec{x}_1 also an eigenvector of A^{-1} ? If so, what is its eigenvalue?

$$\vec{\mathbf{x}}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 is an eigenvector of \mathbf{A} with eigenvalue $\lambda_2 = 2$.

Question L38.2: Is \vec{x}_2 also an eigenvector of A^{-1} ? If so, what is its eigenvalue?

An example: Eigenvalues and eigenvectors of A^{-1}

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$$
 Then $\mathbf{A}^{-1} = \begin{bmatrix} 0.25 & 0.75 \\ 0.25 & -0.25 \end{bmatrix}$

- ullet $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_1 = -2$.
- $\bullet \begin{bmatrix} 0.25 & 0.75 \\ 0.25 & -0.25 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 0.5 \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
- ullet $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of ${\bf A}^{-1}$ with eigenvalue $\frac{1}{\lambda_1} = \frac{1}{-2}$.
- $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_2 = 2$.
- $\begin{bmatrix} 0.25 & 0.75 \\ 0.25 & -0.25 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.5 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
- $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector of \mathbf{A}^{-1} with eigenvalue $\frac{1}{\lambda_2} = \frac{1}{2}$.

Eigenvalues and eigenvectors of inverse matrices

This example illustrates the following general result:

Theorem

Let A be an invertible matrix.

Let \vec{x} be an eigenvector of A with eigenvalue λ .

Then $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A}^{-1} with eigenvalue $\frac{1}{\lambda}$.

In other words, $\bf A$ and $\bf A^{-1}$ have the same eigenvectors, and the eigenvalues of $\bf A^{-1}$ are the reciprocals of the eigenvalues of $\bf A$.

How about the eigenvectors of the transpose?

Let
$$\mathbf{A} = \begin{bmatrix} 8 & 3 \\ -6 & -1 \end{bmatrix}$$
 Then $\mathbf{A}^T = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix}$

in Module 67 we found that:

- $\vec{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_1 = 2$.
- $\vec{\mathbf{x}}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_2 = 5$.

Question L38.3: Is the vector $\vec{\mathbf{x}}_2$ above an eigenvector of \mathbf{A}^T ? If so, what is its eigenvalue?

$$\mathbf{A}^{T}\vec{\mathbf{x}}_{2} = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 14 \\ 4 \end{bmatrix} \neq \lambda \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Thus $\vec{\mathbf{x}}_2$ is not an eigenvector of \mathbf{A} . Similarly, neither is $\vec{\mathbf{x}}_1$.

So how about the eigenvectors of the transpose?

Let
$$\mathbf{A} = \begin{bmatrix} 8 & 3 \\ -6 & -1 \end{bmatrix}$$
 Then $\mathbf{A}^T = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix}$

in Module 67 and Lecture 36 we found that:

- $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_1=2$.
- $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_2=5$.
- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of \mathbf{A}^T with eigenvalue $\lambda_2 = 2$.
- $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of \mathbf{A}^T with eigenvalue $\lambda_1 = 5$.

Thus in this example, the eigenvalues of \mathbf{A} and \mathbf{A}^T are the same, but the eigenvectors of these matrices are different.

A theorem about the eigenvalues of the transpose

The preceding example illustrates the following general theorem.

Theorem

Let **A** be a square matrix, and let λ be an eigenvalue of **A**.

Then λ is an eigenvalue of \mathbf{A}^T .

Thus a square matrix \mathbf{A} and its transpose \mathbf{A}^T always have the same eigenvalues, but not necessarily the same eigenvectors.

In fact, there is no obvious relationship between the eigenvectors of ${\bf A}$ and ${\bf A}^T$.

However, it turns out that the transposes of the eigenvectors of \mathbf{A} will always be so-called *left eigenvectors* of \mathbf{A}^T and *vice versa*.

(Right) eigenvectors and left eigenvectors

Recall that a *column* vector $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ is an *eigenvector* with eigenvalue λ of a square matrix \mathbf{A} if $\mathbf{A}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.

Eigenvectors are sometimes also called a *right eigenvectors*.

Definition

A *row* vector $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ is a *left eigenvector* with eigenvalue λ of a square matrix \mathbf{A} if $\vec{\mathbf{x}}\mathbf{A} = \lambda \vec{\mathbf{x}}$.

For example,
$$[1, -1]$$
 $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = [-1, 1] = (-1)[1, -1].$

Thus [1,-1] is a left eigenvector of $\mathbf{A}=\begin{bmatrix}1&4\\2&3\end{bmatrix}$ with eigenvalue $\lambda=-1.$

A theorem about left eigenvectors of \mathbf{A}^T

Now suppose $\vec{\mathbf{x}}$ is an eigenvector with eigenvalue λ of \mathbf{A} .

This means that $\vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ and $\mathbf{A}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.

Then $\vec{\mathbf{x}}^T \neq \vec{\mathbf{0}}$ and $(\mathbf{A}\vec{\mathbf{x}})^T = \vec{\mathbf{x}}^T \mathbf{A}^T = (\lambda \vec{\mathbf{x}})^T = \lambda \vec{\mathbf{x}}^T$.

Thus $\vec{\mathbf{x}}^T$ is a left eigenvector of \mathbf{A}^T with the same eigenvalue λ .

This observation proves the following result:

Theorem

Let **A** be a square matrix, and let $\vec{\mathbf{x}}$ be an eigenvector with eigenvalue λ of **A**.

Then \vec{x}^T is a left eigenvector of **A** with eigenvalue λ .

Similarly, if \vec{y} is a left eigenvector of A with eigenvalue λ , then \vec{y}^T is an eigenvector with eigenvalue λ of A^T .

How about left eigenvectors of the transpose?

Let
$$\mathbf{A} = \begin{bmatrix} 8 & 3 \\ -6 & -1 \end{bmatrix}$$
 Then $\mathbf{A}^T = \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix}$

in Module 67 we found that:

- $\vec{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_1 = 2$.
- $\vec{\mathbf{x}}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector of **A** with eigenvalue $\lambda_2 = 5$.

Question L38.4: Find a left eigenvector of \mathbf{A}^T with eigenvalue $\lambda = 2$.

$$\vec{\mathbf{x}}_1^T \mathbf{A}^T = [1, -2] \begin{bmatrix} 8 & -6 \\ 3 & -1 \end{bmatrix} = [2, -4] = 2[1, -2].$$

Thus $\vec{\mathbf{x}}_1^T = [1, -2]$ is a left eigenvector of **A** with eigenvalue $\lambda = 2$.

Take-home message

Theorem

Let **A** be an invertible matrix, and let $\vec{\mathbf{x}}$ be an eigenvector of **A** with eigenvalue λ .

Then $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A}^{-1} with eigenvalue $\frac{1}{\lambda}$.

In other words, \mathbf{A} and \mathbf{A}^{-1} have the same eigenvectors, and the eigenvalues of \mathbf{A}^{-1} are the reciprocals of the eigenvalues of \mathbf{A} .

Theorem

Let A be a square matrix. Then A and A^T have the same eigenvalues. However, A and A^T usually have different eigenvectors.

But if $\vec{\mathbf{x}}$ is an eigenvector of \mathbf{A} with eigenvalue λ , then $\vec{\mathbf{x}}^T$ is a left eigenvector with eigenvalue λ of \mathbf{A}^T , which means that $\vec{\mathbf{x}}^T\mathbf{A}^T=\lambda\vec{\mathbf{x}}^T$.

Similarly, if \vec{y} is a left eigenvector of \mathbf{A} with eigenvalue λ , then \vec{y}^T is an eigenvector with eigenvalue λ of \mathbf{A}^T .