Lecture 43: Orthogonal Projections, Orthogonal Complements, and Orthonormal Bases

Winfried Just
Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Projections and orthogonal complements

Theorem

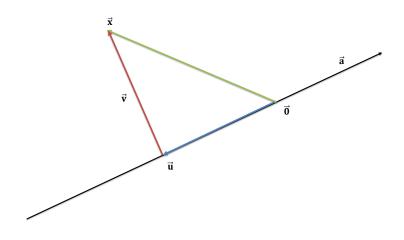
Let $\vec{\mathbf{a}}, \vec{\mathbf{x}}$ be two vectors in \mathbb{R}^n .

Then there exists exactly one pair $(\vec{\mathbf{u}}, \vec{\mathbf{v}})$ of vectors in \mathbb{R}^n such that

- $\mathbf{0} \ \vec{\mathbf{x}} = \vec{\mathbf{u}} + \vec{\mathbf{v}}.$
- $\vec{\mathbf{u}} = c\vec{\mathbf{a}}$ for some scalar c, that is, $\vec{\mathbf{u}}, \vec{\mathbf{a}}$ are on the same line.
- $\langle \vec{a}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle = 0$, that is, \vec{v} is orthogonal to \vec{a} and \vec{u} .

The vector $\vec{\mathbf{u}}$ is called the *projection of* $\vec{\mathbf{x}}$ *onto* $\vec{\mathbf{a}}$, while $\vec{\mathbf{v}}$ is called the *orthogonal complement of* $\vec{\mathbf{x}}$ *with respect to* $\vec{\mathbf{a}}$.

Projections and orthogonal complements



How to compute projections and orthogonal complements?

Theorem

Let $\vec{\mathbf{a}}, \vec{\mathbf{x}}$ be two vectors in \mathbb{R}^n .

Then there exists exactly one pair $(\vec{\mathbf{u}}, \vec{\mathbf{v}})$ of vectors in \mathbb{R}^n such that

- ② $\vec{u} = c\vec{a}$ for some scalar c, that is, \vec{u}, \vec{a} are on the same line.

When $\vec{a}=\vec{0}$, then $\vec{u}=\vec{0}$ and $\vec{v}=\vec{x}$. When $\vec{a}\neq\vec{0}$, then

$$\vec{\mathbf{u}} = \frac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}} \rangle} \vec{\mathbf{a}}$$
 and $\vec{\mathbf{v}} = \vec{\mathbf{x}} - \vec{\mathbf{u}} = \vec{\mathbf{x}} - \frac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}} \rangle} \vec{\mathbf{a}}$.

The vector $\vec{\mathbf{u}}$ is called the *projection of* $\vec{\mathbf{x}}$ *onto* $\vec{\mathbf{a}}$, while $\vec{\mathbf{v}}$ is called the *orthogonal complement of* $\vec{\mathbf{x}}$ *with respect to* $\vec{\mathbf{a}}$.

Example 1 of a projection and an orthogonal complement

Example 1: Consider $\vec{\mathbf{a}} = [1, 2]$ and $\vec{\mathbf{x}} = [-2, 3]$.

The projection $\vec{\mathbf{u}}$ of $\vec{\mathbf{x}}$ onto $\vec{\mathbf{a}}$ is given by

$$\vec{\mathbf{u}} = \frac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}} \rangle} \, \vec{\mathbf{a}} = \frac{\langle [1,2], [-2,3] \rangle}{\langle [1,2], [1,2] \rangle} \, [1,2].$$

Question L43.1: What is ([1, 2], [-2, 3])?

$$\langle [1,2], [-2,3] \rangle = 1(-2) + (2)(3) = 4.$$

Similarly,
$$\langle [1,2], [1,2] \rangle = (1)(1) + (2)(2) = 5$$
.

It follows that
$$\vec{\mathbf{u}} = \frac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}} \rangle} \vec{\mathbf{a}} = \frac{4}{5} [1, 2] = [0.8, 1.6].$$

The orthogonal complement \vec{v} of \vec{x} with respect to \vec{a} is given by

$$\vec{\mathbf{v}} = \vec{\mathbf{x}} - \vec{\mathbf{u}} = [-2, 3] - [0.8, 1.6] = [-2.8, 1.4].$$

Example 2 of projections and orthogonal complements

Consider $\vec{x} = [-2, 3, 4]$.

The projection \vec{u} of \vec{x} onto $\vec{a}=\vec{e}_1$ is given by

$$\vec{\mathbf{u}} = \frac{\langle \vec{\mathbf{e}}_1, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{e}}_1, \vec{\mathbf{e}}_1 \rangle} \vec{\mathbf{e}}_1 = \frac{\langle [1,0,0], [-2,3,4] \rangle}{\langle [1,0,0], [1,0,0] \rangle} \vec{\mathbf{e}}_1 = (-2)\vec{\mathbf{e}}_1 = [-2,0,0].$$

The orthogonal complement \vec{v} of \vec{x} with respect to \vec{e}_1 is given by

$$\vec{\mathbf{v}} = \vec{\mathbf{x}} - \vec{\mathbf{u}} = [-2, 3, 4] - [-2, 0, 0] = [0, 3, 4] = 3\vec{\mathbf{e}}_2 + 4\vec{\mathbf{e}}_3.$$

Question L43.2: Find the projection \vec{u} of \vec{x} onto $\vec{a} = \vec{e}_2$.

$$\vec{\boldsymbol{u}} = \frac{\langle \vec{e}_2, \vec{x} \rangle}{\langle \vec{e}_2, \vec{e}_2 \rangle} \, \vec{\boldsymbol{e}}_2 = \frac{\langle [0,1,0], [-2,3,4] \rangle}{\langle [0,1,0], [0,1,0] \rangle} \, \vec{\boldsymbol{e}}_2 = 3 \vec{\boldsymbol{e}}_2 = [0,3,0].$$

Question L43.3: Find the orthogonal complement \vec{v} of \vec{x} with respect to \vec{e}_2 .

$$\vec{\mathbf{v}} = \vec{\mathbf{x}} - \vec{\mathbf{u}} = [-2, 3, 4] - [0, 3, 0] = [-2, 0, 4] = (-2)\vec{\mathbf{e}}_1 + 4\vec{\mathbf{e}}_3.$$

Example 2 generalizes

Example 2 illustrates a more general fact. When $\vec{\mathbf{x}}$ is in \mathbb{R}^n , then $\vec{\mathbf{x}} = x_1 \vec{\mathbf{e}}_1 + \dots + x_i \vec{\mathbf{e}}_i + \dots + x_n \vec{\mathbf{e}}_n$ and the vectors $\vec{\mathbf{u}} = x_i \vec{\mathbf{e}}_i$ and $\vec{\mathbf{v}} = x_1 \vec{\mathbf{e}}_1 + \dots + x_{i-1} \vec{\mathbf{e}}_{i-1} + x_{i+1} \vec{\mathbf{e}}_{i+1} + \dots + x_n \vec{\mathbf{e}}_n$ are orthogonal. Thus we get:

Proposition

Let $\vec{\mathbf{x}} = [x_1, x_2, \dots, x_n]$ be any vector in \mathbb{R}^n . Then the orthogonal projection of $\vec{\mathbf{x}}$ on any standard basis vector $\vec{\mathbf{e}}_i$ is

$$\vec{\mathbf{u}} = \mathbf{x}_i \vec{\mathbf{e}}_i$$
.

Moreover, the orthogonal complement is given by

$$\vec{\mathbf{v}} = x_1 \vec{\mathbf{e}}_1 + \dots + x_{i-1} \vec{\mathbf{e}}_{i-1} + x_{i+1} \vec{\mathbf{e}}_{i+1} + \dots + x_n \vec{\mathbf{e}}_n.$$

Notice that in this argument we only used the fact that the standard basis vectors $\vec{\mathbf{e}}_1, \dots, \vec{\mathbf{e}}_n$ are all orthogonal.

Finding the coefficients

Proposition

Let $B = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for a vector space that consists of pairwise orthogonal vectors, that is, a basis with

 $\langle \vec{\mathbf{b}}_i, \vec{\mathbf{b}}_j \rangle = 0$ whenever $i \neq j$.

Let $\vec{\mathbf{c}} = [c_1, \dots, c_n]$ be expressed in alternative coordinates with respect to B.

Then the orthogonal projection of \vec{c} on any vector \vec{b}_i is $\vec{u} = c_i \vec{b}_i$. Moreover, the orthogonal complement is given by

$$\vec{\mathbf{v}} = c_1 \vec{\mathbf{b}}_1 + \dots + c_{i-1} \vec{\mathbf{b}}_{i-1} + c_{i+1} \vec{\mathbf{b}}_{i+1} + \dots + c_n \vec{\mathbf{b}}_n$$

This observation provides a convenient way of calculating alternative coordinates with respect to a given basis B, as long as all vectors in this basis are orthogonal.

Example 3: Calculating alternative coordinates

Let
$$B = \{\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_3\} = \{[1, 1, 1], [-2, 1, 1], [0, 1, -1]\}.$$
 Here $\langle [1, 1, 1], [-2, 1, 1] \rangle = -2 + 1 + 1 = 0$, $\langle [1, 1, 1], [0, 1, -1] \rangle = 1 - 1 = 0$, and $\langle [-2, 1, 1], [0, 1, -1] \rangle = 1 - 1 = 0$.

Thus B is a basis for \mathbb{R}^3 that consists of orthogonal vectors.

Let us express the vector $\vec{\mathbf{x}} = [1, 2, 3]$ in alternative coordinates $\vec{\mathbf{c}}$ with respect to B, that is, find coefficients c_1, c_2, c_3 such that $\vec{\mathbf{x}} = c_1 \vec{\mathbf{b}}_1 + c_2 \vec{\mathbf{b}}_2 + c_3 \vec{\mathbf{b}}_3$.

If we were to use the method of Chapter 3, we would need to write the vectors of the basis B as columns of a matrix \mathbf{B} , compute the inverse matrix \mathbf{B}^{-1} ,

and then obtain the vector
$$\vec{\mathbf{c}} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \mathbf{B}^{-1} \vec{\mathbf{x}}.$$

Example 3: Calculating alternative coordinates differently

For
$$B = \{\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_3\} = \{[1, 1, 1], [-2, 1, 1], [0, 1, -1]\}$$
 we have $\langle \vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2 \rangle = \langle \vec{\mathbf{b}}_1, \vec{\mathbf{b}}_3 \rangle = \langle \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_3 \rangle = 0.$

Let us express the vector $\vec{\mathbf{x}} = [1, 2, 3]$ in alternative coordinates $\vec{\mathbf{c}}$ with repsect to B, that is, let us find coefficients c_1, c_2, c_3 such that $\vec{\mathbf{x}} = c_1 \vec{\mathbf{b}}_1 + c_2 \vec{\mathbf{b}}_2 + c_3 \vec{\mathbf{b}}_3$.

Since the vectors in B are all orthogonal, by the observation on slide 8 we can use the simpler method of calculating the alternative coordinates c_1, c_2, c_3 of $\vec{\mathbf{x}}$ with respect to B as the coefficients of the projections of $\vec{\mathbf{x}}$ onto $\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_3$, respectively.

In particular,

$$c_1 = \frac{\langle \vec{\mathbf{b}}_1, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{b}}_1, \vec{\mathbf{b}}_1 \rangle} = \frac{\langle [1,1,1], [1,2,3] \rangle}{\langle [1,1,1], [1,1,1] \rangle} = \frac{6}{3} = 2.$$

Example 3: Calculating alternative coordinates, completed

Let
$$B = {\{\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_3\}} = {\{[1, 1, 1], [-2, 1, 1], [0, 1, -1]\}}.$$

Here
$$\langle \vec{\boldsymbol{b}}_1, \vec{\boldsymbol{b}}_2 \rangle = \langle \vec{\boldsymbol{b}}_1, \vec{\boldsymbol{b}}_3 \rangle = \langle \vec{\boldsymbol{b}}_2, \vec{\boldsymbol{b}}_3 \rangle = 0.$$

Since the vectors in B are all orthogonal, the alternative coordinates c_1, c_2, c_3 of $\vec{\mathbf{x}}$ with respect to B are the coefficients of the projections of $\vec{\mathbf{x}}$ onto $\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_3$, respectively.

In particular,
$$c_1 = \frac{\langle \vec{\mathbf{b}}_1, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{b}}_1, \vec{\mathbf{b}}_1 \rangle} = \frac{\langle [1,1,1], [1,2,3] \rangle}{\langle [1,1,1], [1,1,1] \rangle} = \frac{6}{3} = 2.$$

Question L43.4: Find c_2 .

$$c_2 = \frac{\langle \vec{\mathbf{b}}_2, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{b}}_2, \vec{\mathbf{b}}_2 \rangle} = \frac{\langle [-2,1,1], [1,2,3] \rangle}{\langle [-2,1,1], [-2,1,1] \rangle} = \frac{3}{6} = 0.5.$$

Similarly,
$$c_3 = \frac{\langle \vec{\mathbf{b}}_3, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{b}}_3, \vec{\mathbf{b}}_3 \rangle} = \frac{\langle [0, 1, -1], [1, 2, 3] \rangle}{\langle [0, 1, -1], [0, 1, -1] \rangle} = \frac{-1}{2} = -0.5.$$

Check the result: 2[1,1,1] + 0.5[-2,1,1] - 0.5[0,1,-1] = [1,2,3].

Orthonormal bases

In Example 2 we had an added bonus: Since $\langle \vec{\mathbf{e}}_i, \vec{\mathbf{e}}_i \rangle = 1$ for all $\vec{\mathbf{e}}_i$, the direct calculation of the projection was much simpler than in Example 3. The following definition codifies these nice properties of $\{\vec{\mathbf{e}}_1,\ldots,\vec{\mathbf{e}}_n\}$:

Definition

- (i) A set $B = \{\vec{\mathbf{b}}_1, \dots, \vec{\mathbf{b}}_n\}$ of vectors is *orthogonal* if $\langle \vec{\mathbf{b}}_i, \vec{\mathbf{b}}_j \rangle = 0$ for all $i \neq j$.
- (ii) We call B orthonormal if it is orthogonal and composed of unit vectors, so that $\|\vec{\mathbf{b}}_i\| = \langle \vec{\mathbf{b}}_i, \vec{\mathbf{b}}_i \rangle = 1$ for all $i = 1, \dots, n$.
- (iii) A set B is an *orthonormal basis* for a linear subspace V of \mathbb{R}^n if it is orthonormal and a basis for V.

In particular $B = \{\vec{\mathbf{e}}_1, \dots, \vec{\mathbf{e}}_n\}$ is an orthonormal basis for \mathbb{R}^n .

The basis B of Example 3 was an orthogonal basis for \mathbb{R}^3 , but not an orthonormal basis.

Alternative coordinates with respect to orthonormal bases

Let V be a vector space, and let $B = \{\vec{\mathbf{b}}_1, \dots, \vec{\mathbf{b}}_k\}$ be an *orthogonal* basis of V. Then any vector $\vec{\mathbf{x}}$ in V can be expressed in alternative coordinates $\vec{\mathbf{c}}$ wrt the this basis B as follows:

$$\vec{\mathbf{c}} = \left[\frac{\langle \vec{\mathbf{b}}_1, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{b}}_1, \vec{\mathbf{b}}_1 \rangle}, \dots, \frac{\langle \vec{\mathbf{b}}_k, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{b}}_k, \vec{\mathbf{b}}_k \rangle} \right]. \tag{1}$$

In particular, when B is orthonormal, then

$$\langle ec{f b}_1, ec{f b}_1
angle, \ldots, \langle ec{f b}_k, ec{f b}_k
angle = 1$$
, and (1) simplifies to

$$\vec{\mathbf{c}} = \left[\langle \vec{\mathbf{b}}_1, \vec{\mathbf{x}} \rangle, \dots, \langle \vec{\mathbf{b}}_k, \vec{\mathbf{x}} \rangle \right]$$
, so that $\vec{\mathbf{x}} = \langle \vec{\mathbf{b}}_1, \vec{\mathbf{x}} \rangle \vec{\mathbf{b}}_1 + \dots + \langle \vec{\mathbf{b}}_k, \vec{\mathbf{x}} \rangle \vec{\mathbf{b}}_k$.

In the above notation we have implicitly assumed that V consists of row vectors. The analogue result holds for spaces V that consist of column vectors.

Summary: Projections and orthogonal complements

Theorem

Let $\vec{\mathbf{a}}, \vec{\mathbf{x}}$ be two vectors in \mathbb{R}^n .

Then there exists exactly one pair $(\vec{\mathbf{u}}, \vec{\mathbf{v}})$ of vectors in \mathbb{R}^n such that

- $\mathbf{0} \ \vec{\mathbf{x}} = \vec{\mathbf{u}} + \vec{\mathbf{v}}.$
- $\vec{\mathbf{u}} = c\vec{\mathbf{a}}$ for some scalar $\vec{\mathbf{c}}$, that is, $\vec{\mathbf{u}}$, $\vec{\mathbf{a}}$ are on the same line.

When $\vec{a}=\vec{0}$, then $\vec{u}=\vec{0}$ and $\vec{v}=\vec{x}$. When $\vec{a}\neq\vec{0}$, then

$$\vec{\mathbf{u}} = \frac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}} \rangle} \vec{\mathbf{a}}$$
 and $\vec{\mathbf{v}} = \vec{\mathbf{x}} - \vec{\mathbf{u}} = \vec{\mathbf{x}} - \frac{\langle \vec{\mathbf{a}}, \vec{\mathbf{x}} \rangle}{\langle \vec{\mathbf{a}}, \vec{\mathbf{a}} \rangle} \vec{\mathbf{a}}$.

The vector $\vec{\mathbf{u}}$ is called the *projection of* $\vec{\mathbf{x}}$ *onto* $\vec{\mathbf{a}}$, while $\vec{\mathbf{v}}$ is called the *orthogonal complement of* $\vec{\mathbf{x}}$ *with respect to* $\vec{\mathbf{a}}$.

Summary: Orthonormal sets of vectors and bases

- A set $B = \{\vec{\mathbf{b}}_1, \dots, \vec{\mathbf{b}}_n\}$ of vectors is *orthogonal* if $\langle \vec{\mathbf{b}}_i, \vec{\mathbf{b}}_j \rangle = 0$ for all $i \neq j$.
- We call *B* orthonormal if it is orthogonal and composed of unit vectors, so that $\|\vec{\mathbf{b}}_i\| = \langle \vec{\mathbf{b}}_i, \vec{\mathbf{b}}_i \rangle = 1$ for all i = 1, ..., n.
- A set B is an *orthonormal basis* for a linear subspace V of \mathbb{R}^n if it is orthonormal and a basis for V.
- $B = {\vec{\mathbf{e}}_1, \dots, \vec{\mathbf{e}}_n}$ is an orthonormal basis for \mathbb{R}^n .
- When B is an orthonormal basis for a vector space V, then every vector $\vec{\mathbf{x}}$ can be written in the alternative coordinates $\vec{\mathbf{c}}$ with respect to B that are given by

$$\vec{\mathbf{c}} = [\langle \vec{\mathbf{b}}_1, \vec{\mathbf{x}} \rangle, \langle \vec{\mathbf{b}}_2, \vec{\mathbf{x}} \rangle, \dots, \langle \vec{\mathbf{b}}_n, \vec{\mathbf{x}} \rangle].$$