Lecture 5: Products of Matrices

Winfried Just Department of Mathematics, Ohio University

MATH3200: Applied Linear Algebra

Matrix multiplication has a few surprises up its sleeve

Let $\mathbf{A} = [a_{ij}]_{m \times n}$, $\mathbf{B} = [b_{ij}]_{m' \times n'}$ be two matrices.

The sum A + B behaves exactly as one might expect, the product AB doesn't.

- A + B is defined whenever m = m' and n = n'.
 AB may not be defined for matrices of the same order, and is sometimes meaningful for matrices of different orders.
- When $\mathbf{A} + \mathbf{B} = [c_{ij}]$, then always $c_{ij} = a_{ij} + b_{ij}$. When $\mathbf{AB} = [d_{ii}]$, then usually $d_{ij} \neq a_{ij}b_{ij}$.
- A + B = B + A, exactly as for addition of numbers.
 Unlike in multiplication of numbers, it is possible that AB ≠ BA.

When can we multiply two matrices?

Let $\mathbf{A} = [a_{ij}]_{k \times n}$, $\mathbf{B} = [b_{ij}]_{m \times p}$ be two matrices.

Then the product AB is defined if, and only if, n = m, that is, the number of columns of A is equal to the number of rows of B.

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 6 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} 1 & 4 \\ -1 & 7 \\ -3 & 0 \end{bmatrix}$ $\mathbf{C} = \begin{bmatrix} 5 & 6 & 7 \\ 4 & 3 & 2 \end{bmatrix}$

AB is defined (3 columns, 3 rows),

AC is not defined (3 columns, 2 rows),

AA is defined (3 columns, 3 rows),

BA is not defined (2 columns, 3 rows).

When can we multiply two matrices?

Let $\mathbf{A} = [a_{ij}]_{k \times n}$, $\mathbf{B} = [b_{ij}]_{m \times p}$ be two matrices.

Then the product **AB** is defined if, and only if, n = m, that is, the number of columns of **A** is equal to the number of rows of **B**.

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 6 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} 1 & 4 \\ -1 & 7 \\ -3 & 0 \end{bmatrix}$ $\mathbf{C} = \begin{bmatrix} 5 & 6 & 7 \\ 4 & 3 & 2 \end{bmatrix}$

Question L5.1: Which of the matrix products BB, BC, CA, CB, CC are defined?

BB is not defined (2 columns, 3 rows),

BC is defined (2 columns, 2 rows),

CA is defined (3 columns, 3 rows),

CB is defined (3 columns, 3 rows),

CC is not defined (3 columns, 2 rows).

The order of the product

Let $\mathbf{A} = [a_{ij}]_{k \times n}$ and $\mathbf{B} = [b_{ij}]_{n \times p}$ be such that the number of columns of \mathbf{A} is equal to the number of rows of \mathbf{B} .

Then the product **AB** is defined and has order $k \times p$.

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 6 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} 1 & 4 \\ -1 & 7 \\ -3 & 0 \end{bmatrix}$ $\mathbf{C} = \begin{bmatrix} 5 & 6 & 7 \\ 4 & 3 & 2 \end{bmatrix}$

AB has order 3×2 , and **AA** has order 3×3 .

Question L5.2: What are the orders of BC, CA, and CB?

BC has order 3×3 ,

CA has order 2×3 ,

CB has order 2×2 .

Products of matrices with vectors

Let **A** be a matrix of order $m \times n$ and let $\vec{\mathbf{v}}$ be a $1 \times m$ row vector.

Then $\vec{\mathbf{v}}\mathbf{A}$ is a $1 \times n$ row vector:

$$\vec{\mathbf{v}}\mathbf{A} = [v_1, \dots, v_m] \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = [w_1, \dots, w_n]$$

Now let $\vec{\mathbf{v}}$ be an $n \times 1$ column vector.

Then $\mathbf{A}\vec{\mathbf{v}}$ is an $m \times 1$ column vector:

$$\mathbf{A}\vec{\mathbf{v}} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$$

The definition of the product

Let $\mathbf{A} = [a_{ij}]_{k \times n}$ and $\mathbf{B} = [b_{ij}]_{n \times p}$ be such that the number of columns of \mathbf{A} is equal to the number of rows of \mathbf{B} .

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{\ell=1}^{n} a_{i\ell}b_{\ell j}.$$

$$\begin{bmatrix} a_{11} \dots a_{1\ell} \dots a_{1n} \\ \dots \\ a_{i1} \dots a_{i\ell} \dots a_{in} \\ \dots \\ a_{k1} \dots a_{k\ell} \dots a_{kn} \end{bmatrix} \begin{bmatrix} b_{11} \dots b_{1j} \dots b_{1p} \\ \dots \\ b_{\ell 1} \dots b_{\ell j} \dots b_{\ell p} \\ \dots \\ b_{n1} \dots b_{nj} \dots b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} \dots c_{1j} \dots c_{1p} \\ \dots \\ c_{i1} \dots c_{ij} \dots c_{ip} \\ \dots \\ c_{k1} \dots c_{kj} \dots c_{kp} \end{bmatrix}$$

An example of a matrix product

Let $\mathbf{A} = [a_{ij}]_{2\times 3}$ and $\mathbf{B} = [b_{ij}]_{3\times 3}$.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

An example of a product: c_{11}

Let $\mathbf{A} = [a_{ij}]_{2\times 3}$ and $\mathbf{B} = [b_{ij}]_{3\times 3}$.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} = 1 - 3 + 0 = -2.$$

An example of a product: c_{12}

Let $\mathbf{A} = [a_{ij}]_{2\times 3}$ and $\mathbf{B} = [b_{ij}]_{3\times 3}$.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & \mathbf{6} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

$$c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} = 4 + 2 + 0 = 6.$$

What is c_{13} ?

Let $A = [a_{ij}]_{2\times 3}$ and $B = [b_{ij}]_{3\times 3}$.

Then the product **AB** is the matrix $\mathbf{C} = [c_{ij}]_{2\times 3}$ such that for all i = 1, 2 and j = 1, 2, 3:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & \mathbf{6} & ? \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

Question L5.3: What is c_{13} ?

An example of a product: c_{13}

Let $\mathbf{A} = [a_{ij}]_{2\times 3}$ and $\mathbf{B} = [b_{ij}]_{3\times 3}$.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{vmatrix} 1 & 4 & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{vmatrix} = \begin{bmatrix} -2 & 6 & \mathbf{1} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

$$c_{13} = a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} = 2 - 1 + 0 = 1.$$

An example of a product: c_{21}

Let $\mathbf{A} = [a_{ij}]_{2\times 3}$ and $\mathbf{B} = [b_{ij}]_{3\times 3}$.

Then the product **AB** is the matrix $\mathbf{C} = [c_{ij}]_{2\times 3}$ such that for all i = 1, 2 and j = 1, 2, 3:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 6 & 1 \\ ? & c_{22} & c_{23} \end{bmatrix}$$

Question L5.4: What is c_{21} ?

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} = 0 + 6 + 3 = 9.$$

An example of a product: c_{22}

Let $A = [a_{ij}]_{2\times 3}$ and $B = [b_{ij}]_{3\times 3}$.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & \mathbf{4} & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 6 & 1 \\ 9 & -\mathbf{7} & c_{23} \end{bmatrix}$$

$$c_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} = 0 - 4 - 3 = -7.$$

An example of a product: c_{23}

Let $A = [a_{ij}]_{2\times 3}$ and $B = [b_{ij}]_{3\times 3}$.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} = \sum_{\ell=1}^{3} a_{i\ell}b_{\ell j}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 3 & -2 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 6 & 1 \\ 9 & -7 & 8 \end{bmatrix}$$

$$c_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} = 0 + 2 + 6 = 8.$$

The inner product of two vectors

Assume $\vec{\mathbf{x}}$ is a $1 \times n$ row vector and $\vec{\mathbf{y}}$ is an $m \times 1$ column vector. Then $\vec{\mathbf{x}}\vec{\mathbf{y}}$ exists if, and only if, n = m, that is, if these vectors have the same dimension.

If the product $\vec{x}\vec{y}$ exists, it has order 1×1 .

$$\vec{\mathbf{x}}\vec{\mathbf{y}} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = [c],$$

where
$$c = x_1y_1 + x_2y_2 + \cdots + x_ny_n = \sum_{\ell=1}^{n} x_{\ell}y_{\ell}$$

is called the *inner product* or *dot product* of \vec{x} and \vec{y} .

The inner product: Examples

Let

$$\vec{\mathbf{x}} = \begin{bmatrix} 2 & 4 \end{bmatrix}$$
 $\vec{\mathbf{y}} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ $\vec{\mathbf{z}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ $\vec{\mathbf{u}} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$

Then

$$\vec{\mathbf{x}}\vec{\mathbf{y}} = [(2)(-1) + (4)(3)] = [10].$$

Note that $\vec{x}\vec{u}$ is undefined.

Question L5.5: What is $\vec{x}\vec{z}$?

$$\vec{x}\vec{z} = [(2)(2) + (4)(-1)] = [0].$$

An application of inner products

Sums of vectors can be expressed as inner products:

$$\begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \sum_{\ell=1}^n x_\ell \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

For example,
$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = [1+2+3] = [6]$$

and
$$\begin{bmatrix} 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = [5+6] = [11]$$

A second look at the definition of the product AB

$$\begin{bmatrix} a_{11} \dots a_{1\ell} \dots a_{1n} \\ \vdots \\ a_{i1} \dots a_{i\ell} \dots a_{in} \\ \vdots \\ a_{k1} \dots a_{k\ell} \dots a_{kn} \end{bmatrix} \begin{bmatrix} b_{11} \dots b_{1j} \dots b_{1p} \\ \vdots \\ b_{\ell 1} \dots b_{\ell j} \dots b_{\ell p} \\ \vdots \\ b_{n1} \dots b_{nj} \dots b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} \dots c_{1j} \dots c_{1p} \\ \vdots \\ c_{i1} \dots c_{ij} \dots c_{ip} \\ \vdots \\ c_{k1} \dots c_{kj} \dots c_{kp} \end{bmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{\ell=1}^{n} a_{i\ell}b_{\ell j}.$$

Let $\vec{\mathbf{a}}_{i*}$ denote the vector in row i of \mathbf{A} , and let $\vec{\mathbf{b}}_{*j}$ denote the vector in column j of \mathbf{B} .

In this notation,
$$[\mathbf{c_{ij}}] = \vec{\mathbf{a}}_{i*}\vec{\mathbf{b}}_{*j}$$
.

Summary

- The product **AB** of two matrices $\mathbf{A} = [a_{ij}]_{k \times n}$, $\mathbf{B} = [b_{ij}]_{m \times p}$ is defined if, and only if, n = m, that is, the number of columns of **A** is equal to the number of rows of **B**.
- If **AB** is defined, it has order $k \times p$.
- If $\mathbf{AB} = [c_{ij}]_{k \times p}$ is defined, then $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{\ell=1}^{n} a_{i\ell}b_{\ell j}$.
- The matrix product $\vec{x}\vec{y}$ of a row vector \vec{x} and a column vector \vec{y} of the same length is a 1×1 matrix whose single element is called *the inner product* or *dot product* of these vectors.
- The sums of the rows of a matrix **A** are given by the matrix product $\mathbf{A}[1\ 1\dots 1]^T$ of **A** with a vector of ones.
- Similarly, the sums of the columns are given by the matrix product $[1 \ 1 \dots 1]$ **A** of a vector of ones with **A**.