MATH3200: APPLIED LINEAR ALGEBRA SELF-STUDY AND PRACTICE MODULE 46: VECTOR SPACES AND THEIR SPANNING SETS

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Lecture 23. Recall the following definitions from this Lecture:

- We call a subset V of some \mathbb{R}^n that is of the form $V = span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$ for some subset $S = {\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k}$ of \mathbb{R}^n a linear subspace of \mathbb{R}^n . In this course, the phrase vector space will always mean "a linear subspace of \mathbb{R}^n for some positive integer n."
- The set S is then called a spanning set of V and we will sometimes write V = span(S) instead of $V = span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$.

Notice the indefinite article "a" in the definition of "a spanning set." This is because a given vector space V will usually have infinitely many different spanning sets. Consider, for example, the vectors $\vec{\mathbf{v}}_1 = [1,0,0], \vec{\mathbf{v}}_2 = [0,1,0], \vec{\mathbf{v}}_3 = [0,0.5,0]$ in \mathbb{R}^3 . Let $V = span(\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2)$. This is the x-y-plane, since by definition $\vec{\mathbf{w}}$ is a linear combination of the vectors $\vec{\mathbf{v}}_1$ and $\vec{\mathbf{v}}_2$ if, and only if, $\vec{\mathbf{w}} = x\vec{\mathbf{v}}_1 + y\vec{\mathbf{v}}_2 = x [1,0,0] + y [0,1,0] = [x,y,0]$ for some coefficients x,y.

Similarly, $\vec{\mathbf{w}}$ is a linear combination of the vectors $\vec{\mathbf{v}}_1$ and $\vec{\mathbf{v}}_3$ if, and only if,

 $\vec{\mathbf{w}} = d_1 \vec{\mathbf{v}}_1 + d_3 \vec{\mathbf{v}}_3 = d_1 [1, 0, 0] + d_3 [0, 0.5, 0] = [d_1, 0.5d_3, 0]$ for some coefficients d_1, d_3 .

By choosing $d_1 = x$ and $d_3 = 2y$, we can obtain any given vector [x, y, 0] in the x-y-plane as a linear combination of $\vec{\mathbf{v}}_1$ and $\vec{\mathbf{v}}_3$, which shows that $V = span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_3)$.

Every vector $\vec{\mathbf{w}} = [x, y, 0]$ in the x-y-plane V can also be written as the linear combination

$$\vec{\mathbf{w}} = x\vec{\mathbf{v}}_1 + y\vec{\mathbf{v}}_2 + 0\vec{\mathbf{v}}_3 = x[1,0,0] + y[0,1,0] + 0[0,0.5,0] = [x,y,0].$$

Conversely, every linear combination of the vectors $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3$ is in the x-y-plane:

$$d_1\vec{\mathbf{v}}_1 + d_2\vec{\mathbf{v}}_2 + d_3\vec{\mathbf{v}}_3 = d_1[1,0,0] + d_2[0,1,0] + d_3[0,0.5,0] = [d_1,d_2+0.5d_3,0].$$

Thus $V = span(\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2,\vec{\mathbf{v}}_3).$

Notice that in the last example the vector $\vec{\mathbf{v}}_3$ was already in $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$, and then $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3)$ turned out to be equal to $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2)$. This will happen in general; let us state this important observation as a formal mathematical result and try to prove it.

Proposition 1. Consider a set $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1}\}$ of vectors of the same order.

- (a) Every vector $\vec{\mathbf{w}}$ in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$ is also in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1})$.
- (b) If $\vec{\mathbf{v}}_{k+1}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$, then $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k) = span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1})$.

Proof: Part (a): If $\vec{\mathbf{w}}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$, then $\vec{\mathbf{w}}$ is a linear combination

 $\vec{\mathbf{w}} = d_1 \vec{\mathbf{v}}_1 + \dots + d_k \vec{\mathbf{v}}_k$ for some coefficients d_1, \dots, d_k .

But then for the same d_1, \ldots, d_k we get

 $\vec{\mathbf{w}} = d_1 \vec{\mathbf{v}}_1 + \dots + d_k \vec{\mathbf{v}}_k + 0 \vec{\mathbf{v}}_{k+1}$, so $\vec{\mathbf{w}}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1})$.

For the proof of part (b) it now suffices to show that if a vector $\vec{\mathbf{w}}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1})$, then $\vec{\mathbf{w}}$ is already in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$. We will give here two versions of this argument:

Version 1: Assume that $\vec{\mathbf{v}}_{k+1}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$, and let $\vec{\mathbf{w}}$ be in $\{\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1}\}$. Then there exist coefficients c_1, \dots, c_k and d_1, \dots, d_k, d_{k+1} such that

$$\vec{\mathbf{v}}_{k+1} = c_1 \vec{\mathbf{v}}_1 + \dots + c_k \vec{\mathbf{v}}_k \quad \text{and} \quad \vec{\mathbf{w}} = d_1 \vec{\mathbf{v}}_1 + \dots + d_k \vec{\mathbf{v}}_k + d_{k+1} \vec{\mathbf{v}}_{k+1}.$$

By substituting the above expression for $\vec{\mathbf{v}}_{k+1}$ into the above expression for $\vec{\mathbf{w}}$ we find that

$$\vec{\mathbf{w}} = d_1 \vec{\mathbf{v}}_1 + \dots + d_k \vec{\mathbf{v}}_k + d_{k+1} \vec{\mathbf{v}}_{k+1}$$

$$= d_1 \vec{\mathbf{v}}_1 + \dots + d_k \vec{\mathbf{v}}_k + d_{k+1} (c_1 \vec{\mathbf{v}}_1 + \dots + c_k \vec{\mathbf{v}}_k)$$

$$= (d_1 + d_{k+1} c_1) \vec{\mathbf{v}}_1 + \dots + (d_k + d_{k+1} c_k) \vec{\mathbf{v}}_k.$$

This shows that $\vec{\mathbf{w}}$ is already a linear combination of $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k$, with coefficients $d_1 + d_{k+1}c_1, \dots, d_k + d_{k+1}c_k$.

Version 2: Assume that $\vec{\mathbf{v}}_{k+1}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$, and let $\vec{\mathbf{w}}$ be in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1})$. Then each of the vectors $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k, \vec{\mathbf{v}}_{k+1}$ is in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$. This $\vec{\mathbf{w}}$ is a linear combination of vectors in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$, and since the linear span of any sets of vectors is closed under linear combinations (see the theorem on slide 7 of Lecture 23), $\vec{\mathbf{w}}$ must also be in $span(\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k)$.

Question 46.1: Which version(s) of the proof of part (b) is (are) correct?

Question 46.2: Consider the set V of all solutions of the linear equation $x_1 + x_2 = 0$. This set is a line through the origin, hence a vector space. Which of the following are spanning sets of V?

$$S_1 = \left\{ \begin{bmatrix} 2 \\ -2 \end{bmatrix} \right\} \quad S_2 = \left\{ \begin{bmatrix} 20 \\ 20 \end{bmatrix} \right\} \quad S_3 = \left\{ \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \begin{bmatrix} 20 \\ 20 \end{bmatrix} \right\} \quad S_4 = \left\{ \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \quad S_5 = \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$$

Question 46.3: Consider the following vectors:

$$\vec{\mathbf{v}}_1 = [1, 2, 3], \ \vec{\mathbf{v}}_2 = [0, 0, 3], \ \vec{\mathbf{v}}_3 = [1, 0, 1], \ \vec{\mathbf{v}}_4 = [2, 0, 1]$$

- (a) Can you express $\vec{\mathbf{v}}_1$ as a linear combination of $\vec{\mathbf{v}}_2$, $\vec{\mathbf{v}}_3$, $\vec{\mathbf{v}}_4$?
- (b) Can you express $\vec{\mathbf{v}}_4$ as a linear combination of $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3$?
- (c) What do points (a) and (b) imply about the relationship between $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3, \vec{\mathbf{v}}_4)$, $span(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3)$, and $span(\vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3, \vec{\mathbf{v}}_4)$? Which of these sets are equal?