MATH3200: APPLIED LINEAR ALGEBRA PRACTICE MODULE 5: ADDITION, SUBTRACTION, TRANSPOSE OF MATRICES AND MULTIPLICATION BY A SCALAR

WINFRIED JUST, OHIO UNIVERSITY

This module uses the terminology and notation of Lecture 4. Consider the following matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 0 & -1 & 4 \\ -2 & 2.5 & 6 \end{bmatrix}$$

Question 5.1: Compute A - B or indicate that it is undefined.

Question 5.2: Compute \mathbf{B}^T or indicate that it is undefined.

Question 5.3: Compute 3A or indicate that it is undefined.

Question 5.4: Compute $A^T + 4B$ or indicate that it is undefined.

Question 5.5: Compute $3A^T + B^T$ or indicate that it is undefined.

Question 5.6: Suppose **D** represents flying times, in hours, between certain airports. Express the matrix **M** of flying times in minutes by using one of the operations that you learned in Lecture 4.

Question 5.7: Suppose $\vec{\mathbf{d}}$ is the vector of departure times of n direct flights from Columbus, Ohio to Orlando, FL that take λ hours each. Let $\vec{\mathbf{l}} = [1, 1, \dots, 1]$ be the row vector of length n that contains only 1s as its elements. Express the vector $\vec{\mathbf{a}}$ of arrival times in terms of operations on these vectors.

Question 5.8: Suppose $\vec{\mathbf{d}}$ is the vector of departure times of n direct flights from Columbus, Ohio to Los Angeles, CA that take λ hours each. Let $\vec{\mathbf{1}} = [1, 1, \dots, 1]$ be the row vector of length n that contains only 1s as its elements. Express the vector of arrival times in terms of operations on suitable vectors. *Hint:* Here you need to account for the different time zones.

Question 5.9: Prove that for any matrices \mathbf{A} , \mathbf{B} of the same order and scalar λ the distributivity law $\lambda \mathbf{A} + \lambda \mathbf{B} = \lambda (\mathbf{A} + \mathbf{B})$ holds. *Hint:* Prove the law first for matrices of order 2×2 , and then generalize to matrices of arbitrary order.