MATH3200: APPLIED LINEAR ALGEBRA PRACTICE MODULE 50: CONSISTENCY OF SYSTEMS OF LINEAR EQUATIONS AND THE RANKS OF THEIR COEFFICIENT AND EXTENDED MATRICES

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Lecture 27 and uses results from Module 49. Recall from Lecture 27 that:

- A linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is consistent if, and only if, $r(\mathbf{A}) = r([\mathbf{A}, \vec{\mathbf{b}}])$.
- When $r(\mathbf{A}) = m$ is equal to the number of rows of \mathbf{A} , then *every* system of the form $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is consistent.

Question 50.1: Consider the system of linear equations

$$\begin{array}{rcrrr} -x_1 & + & 3x_2 & = & 41 \\ -2x_1 & + & 6x_2 & = & 84 \end{array}$$

- (a) Does the answer to Question 49.3 of Module 49 allow us to conclude that this system is consistent?
- (b) Find the rank $r([\mathbf{A}, \vec{\mathbf{b}}])$ of the extended matrix for this system.
- (c) Is the above system consistent?

Question 50.2: Consider the system of linear equations

$$3x_1 + 2x_2 + x_3 = 71$$

 $x_1 + x_2 + x_3 = 13$
 $6x_1 + 5x_2 + 6x_3 = 84$

- (a) Does the answer to Question 49.4 of Module 49 allow us to conclude that this system is consistent?
- (b) Find the rank $r([\mathbf{A}, \vec{\mathbf{b}}])$ of the extended matrix for this system.
- (c) Is the above system consistent?