MATH3200: APPLIED LINEAR ALGEBRA SELF-STUDY AND PRACTICE MODULE 53: THE RANK OF THE COEFFICIENT MATRIX AND THEORY OF SOLUTIONS OF A LINEAR SYSTEM, PART I: THREE THEOREMS

WINFRIED JUST, OHIO UNIVERSITY

This module is based on Conversation 29 and Lecture 29.

Let us explicitly state all three theorems that were discussed in this conversation:

Theorem 1. Consider a linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ with coefficient matrix \mathbf{A} of order $m \times n$.

- When $r(\mathbf{A}) = m$, the system is always consistent.
- When $r(\mathbf{A}) < m$, the system is consistent for some, but not for all choices of $\vec{\mathbf{b}}$.

Theorem 2. Consider a linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ with coefficient matrix \mathbf{A} of order $m \times n$.

- When $r(\mathbf{A}) = n$, the system is either inconsistent or has exactly one solution.
- When $r(\mathbf{A}) < n$, the system is either inconsistent or has infinitely many solutions.

Theorem 3. Suppose **A** is the coefficient matrix of a linear system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Let $\vec{\mathbf{x}}$ be a solution of this system and let $\vec{\mathbf{y}}$ be another vector. Then $\vec{\mathbf{y}}$ is also a solution of the same system if, and only if, $\vec{\mathbf{x}} - \vec{\mathbf{y}}$ is in $N(\mathbf{A})$.

In other words, when $\vec{\mathbf{x}}$ is one solution of the system $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$, then all other solutions must be of the form $\vec{\mathbf{x}} + \vec{\mathbf{z}}$, where $\vec{\mathbf{z}}$ is in $N(\mathbf{A})$.

Let us illustrate Theorem 1 with an example. Consider a system of the form:

$$x_1 + x_2 + x_3 = b_1$$

 $2x_1 + 3x_2 + 4x_3 = b_2$
 $x_2 + 2x_3 = b_3$

Here the coefficient matrix \mathbf{A} and the extended matrix $[\mathbf{A}, \vec{\mathbf{b}}]$ are

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \quad \text{and} \quad [\mathbf{A}, \vec{\mathbf{b}}] = \begin{bmatrix} 1 & 1 & 1 & b_1 \\ 2 & 3 & 4 & b_2 \\ 0 & 1 & 2 & b_3 \end{bmatrix}$$

Gaussian elimination on the extended matrix gives:

$$[\mathbf{A}, \vec{\mathbf{b}}] = \begin{bmatrix} 1 & 1 & 1 & b_1 \\ 2 & 3 & 4 & b_2 \\ 0 & 1 & 2 & b_3 \end{bmatrix} \xrightarrow{R2 \mapsto R2 - 2R1} \begin{bmatrix} 1 & 1 & 1 & b_1 \\ 0 & 1 & 2 & b_2 - 2b_1 \\ 0 & 1 & 2 & b_3 \end{bmatrix} \xrightarrow{R3 \mapsto R3 - R2} \begin{bmatrix} 1 & 1 & 1 & b_1 \\ 0 & 1 & 2 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - b_2 + 2b_1 \end{bmatrix}$$

Notice that if we delete the last column from this row echelon form of the extended matrix, we obtain the row echelon form of the coefficient matrix \mathbf{A} . The first and second columns are pivotal columns, but the third one is not. So we can conclude that $r(\mathbf{A}) = 2$, which is less than the number m of rows of \mathbf{A} . Now Theorem 1 indicates that the system will be consistent for some choices of the vector $\vec{\mathbf{b}} = [b_1, b_2, b_3]^T$ and inconsistent for some other choices of this vector. In other words, the column space $CS(\mathbf{A})$ contains some, but not all vectors in \mathbb{R}^3 .

1

Question 53.1: What kind of subset of \mathbb{R}^3 is the set of vectors $\vec{\mathbf{b}}$ for which the above system is consistent?

Question 53.2: Give an example of a nonzero vector $\vec{\mathbf{b}}$ in \mathbb{R}^3 for which the above system is consistent, and an example of a vector $\vec{\mathbf{b}}$ in \mathbb{R}^3 for which the above system is inconsistent.

Question 53.3: Suppose $\vec{\mathbf{b}}$ is a vector such that the above system is consistent. What does Theorem 2 then imply about its solution set?